6.4: Values of the Trigonometric Functions

E. Kim

MTH 151

All notation and terminology is based on Swokowski, Cole. Algebra and Trigonometry: with analytic geometry. Classic 12th Edition.

Accompanying handout:

- Black-and-white: http://www.uwlax.edu/faculty/ekim/resources/unit-circle.pdf
- Color: http://www.uwlax.edu/faculty/ekim/resources/unit-circle-color.pdf

Goal

Goal

Goal

Why understand the unit circle?

For all special angles, we can compute sine, cosine, etc. by knowing these values only for $30^{\circ}, 45^{\circ}$, and 90°.

Why understand the unit circle?

For all special angles, we can compute sine, cosine, etc. by knowing these values only for $30^{\circ}, 45^{\circ}$, and 90°.

For the other special angles, just change the sign as appropriate.

The First Quadrant
$(0,1)$

The First Quadrant
$(0,1)$

The First Quadrant
$(0,1)$

The First Quadrant

The First Quadrant

What is a reference angle?

Take a nonquadrantal ${ }^{1}$ angle θ.

${ }^{1}$ Nonquadrantal means that θ is not a multiple of 90°.

What is a reference angle?

Take a nonquadrantal ${ }^{1}$ angle θ.

θ_{R}, the reference angle
The acute angle made by
${ }^{1}$ Nonquadrantal means that θ is not a multiple of 90°.

What is a reference angle?

Take a nonquadrantal ${ }^{1}$ angle θ.

θ_{R}, the reference angle

The acute angle made by

- terminal side of θ

[^0]
What is a reference angle?

Take a nonquadrantal ${ }^{1}$ angle θ.

θ_{R}, the reference angle

The acute angle made by

- terminal side of θ
- x-axis

[^1]Formula for reference angle θ_{R} in every quadrant

Formula for reference angle θ_{R} in every quadrant

θ in Quadrant 1
$\theta_{R}=\theta$

Formula for reference angle θ_{R} in every quadrant

θ in Quadrant 1
$\theta_{R}=\theta$

Formula for reference angle θ_{R} in every quadrant

θ in Quadrant 1
$\theta_{R}=\theta$

Formula for reference angle θ_{R} in every quadrant

θ in Quadrant 1
$\theta_{R}=\theta$

Formula for reference angle θ_{R} in every quadrant

```
0 in Quadrant 1
0R}=
0 in Quadrant 2
0R}=\pi-
0R}=18\mp@subsup{0}{}{\circ}-
```


Formula for reference angle θ_{R} in every quadrant

$$
\begin{aligned}
& \theta \text { in Quadrant } 1 \\
& \theta_{R}=\theta \\
& \theta \text { in Quadrant } 2 \\
& \theta_{R}=\pi-\theta \\
& \theta_{R}=180^{\circ}-\theta
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant

θ in Quadrant 1 $\theta_{R}=\theta$

θ in Quadrant 2

$$
\begin{aligned}
& \theta_{R}=\pi-\theta \\
& \theta_{R}=180^{\circ}-\theta
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant

θ in Quadrant 1 $\theta_{R}=\theta$

θ in Quadrant 2
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$

Formula for reference angle θ_{R} in every quadrant
θ in Quadrant 1
$\theta_{R}=\theta$
θ in Quadrant
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant

$$
\begin{aligned}
& \theta \text { in Quadrant } 1 \\
& \theta_{R}=\theta
\end{aligned}
$$

θ in Quadrant 2
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant

$$
\begin{aligned}
& \theta \text { in Quadrant } 1 \\
& \theta_{R}=\theta
\end{aligned}
$$

θ in Quadrant 2
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant

$$
\begin{aligned}
& \theta \text { in Quadrant } 1 \\
& \theta_{R}=\theta
\end{aligned}
$$

θ in Quadrant 2
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant

$$
\begin{aligned}
& \theta \text { in Quadrant } 1 \\
& \theta_{R}=\theta
\end{aligned}
$$

θ in Quadrant 2
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta \text { in Quadrant } 4 \\
& \theta_{R}=2 \pi-\theta \\
& \theta_{R}=360^{\circ}-\theta
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant
θ in Quadrant 1
$\theta_{R}=\theta$

$$
\begin{aligned}
& \theta \text { in Quadrant } 2 \\
& \theta_{R}=\pi-\theta \\
& \theta_{R}=180^{\circ}-\theta
\end{aligned}
$$

θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta \text { in Quadrant } 4 \\
& \theta_{R}=2 \pi-\theta \\
& \theta_{R}=360^{\circ}-\theta
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant
θ in Quadrant 1
$\theta_{R}=\theta$
θ in Quadrant
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3

$$
\begin{aligned}
& \theta_{R}=\theta-\pi \\
& \theta_{R}=\theta-180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta \text { in Quadrant } 4 \\
& \theta_{R}=2 \pi-\theta \\
& \theta_{R}=360^{\circ}-\theta
\end{aligned}
$$

Formula for reference angle θ_{R} in every quadrant
θ in Quadrant 1
$\theta_{R}=\theta$
θ in Quadrant
$\theta_{R}=\pi-\theta$
$\theta_{R}=180^{\circ}-\theta$
θ in Quadrant 3
$\theta_{R}=\theta-\pi$
$\theta_{R}=\theta-180^{\circ}$

$$
\begin{aligned}
& \theta \text { in Quadrant } 4 \\
& \theta_{R}=2 \pi-\theta \\
& \theta_{R}=360^{\circ}-\theta
\end{aligned}
$$

Example: $\theta=315^{\circ}$

Example: $\theta=315^{\circ}$

Example: $\theta=315^{\circ}$

Example: $\theta=315^{\circ}$

Example: $\theta=\frac{5 \pi}{6}$

Example: $\theta=\frac{5 \pi}{6}$

Example: $\theta=\frac{5 \pi}{6}$

Example: $\theta=\frac{5 \pi}{6}$

$$
\theta_{R}=\pi-\frac{5 \pi}{6}=\frac{\pi}{6}
$$

Example: $\theta=4$. (Note this is four radians, not degrees!)

Example: $\theta=4$. (Note this is four radians, not degrees!)

Example: $\theta=4$. (Note this is four radians, not degrees!)

What if θ is not between 0° and 360° ?

What if θ is not between 0° and 360° ?

First, find the coterminal angle to θ between 0° and 360°.

What if θ is not between 0° and 360° ?

First, find the coterminal angle to θ between 0° and 360°.
Example: $\theta=-240^{\circ}$.

What if θ is not between 0° and 360° ?

First, find the coterminal angle to θ between 0° and 360°.
Example: $\theta=-240^{\circ}$.
$\theta=-240^{\circ}$ is coterminal to $-240^{\circ}+360^{\circ}$

What if θ is not between 0° and 360° ?

First, find the coterminal angle to θ between 0° and 360°.
Example: $\theta=-240^{\circ}$.
$\theta=-240^{\circ}$ is coterminal to $-240^{\circ}+360^{\circ}=120^{\circ}$

What if θ is not between 0° and 360° ?

First, find the coterminal angle to θ between 0° and 360°.
Example: $\theta=-240^{\circ}$.
$\theta=-240^{\circ}$ is coterminal to $-240^{\circ}+360^{\circ}=120^{\circ}$

To find θ_{R}, use $\theta=120^{\circ}$.

Example: $\theta=-240^{\circ}$, but using 120°

Example: $\theta=-240^{\circ}$, but using 120°

Example: $\theta=-240^{\circ}$, but using 120°

Example: $\theta=-240^{\circ}$, but using 120°

Reference angles and exact values of sin, cos, and tan

Reference angles and exact values of sin, cos, and tan

Reference angles and exact values of sin, cos, and tan

Reference angles and exact values of sin, cos, and tan

Reference angles and exact values of sin, cos, and tan

Reference angles and exact values of sin, cos, and tan

Reference angles and exact values of \sin, cos, and tan

Reference angles and exact values of \sin, cos, and tan

Reference angles and exact values of \sin, cos, and tan

$$
\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \theta=120^{\circ}
$$

Reference angles and exact values of \sin, cos, and tan

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$

$$
\theta_{R}=\pi-\frac{5 \pi}{6}=\frac{\pi}{6}
$$

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=\frac{\pi}{6}$

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=\frac{\pi}{6}$

$$
\sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}
$$

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=\frac{\pi}{6}$

$$
\sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}
$$

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=\frac{\pi}{6}$

$$
\sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}
$$

If $\theta=\frac{5 \pi}{6}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=\frac{\pi}{6}$

$$
\sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}
$$

$\sin \frac{5 \pi}{6}=+\frac{1}{2} \quad \cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2} \quad \tan \frac{5 \pi}{6}=-\frac{\sqrt{3}}{3}$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$

Reference angle is $\theta_{R}=45^{\circ}$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=45^{\circ}$

$$
\sin 45^{\circ}=\frac{\sqrt{2}}{2} \quad \cos 45^{\circ}=\frac{\sqrt{2}}{2} \quad \tan 45^{\circ}=1
$$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=45^{\circ}$

$$
\sin 45^{\circ}=\frac{\sqrt{2}}{2} \quad \cos 45^{\circ}=\frac{\sqrt{2}}{2} \quad \tan 45^{\circ}=1
$$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=45^{\circ}$

$$
\sin 45^{\circ}=\frac{\sqrt{2}}{2} \quad \cos 45^{\circ}=\frac{\sqrt{2}}{2} \quad \tan 45^{\circ}=1
$$

If $\theta=315^{\circ}$, find $\sin \theta, \cos \theta$, and $\tan \theta$
Reference angle is $\theta_{R}=45^{\circ}$

$$
\sin 45^{\circ}=\frac{\sqrt{2}}{2} \quad \cos 45^{\circ}=\frac{\sqrt{2}}{2} \quad \tan 45^{\circ}=1
$$

$\sin 315^{\circ}=-\frac{\sqrt{2}}{2} \quad \cos 315^{\circ}=+\frac{\sqrt{2}}{2} \quad \tan 315^{\circ}=-1$

Summary of using reference angles

1. Find the reference angle θ_{R} for your angle θ.
2. Compute sin, cos, and tan for the reference angle θ_{R}.
3. Adjust the sign based on the quadrant of terminal side of θ.

Finding angles with a calculator

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

$$
\text { If } \sin \theta=k, \text { then } \theta=\sin ^{-1} k .
$$

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

$$
\text { If } \sin \theta=k, \text { then } \theta=\sin ^{-1} k .
$$

$$
\theta=\sin ^{-1}(0.6635)
$$

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

$$
\text { If } \sin \theta=k, \text { then } \theta=\sin ^{-1} k
$$

$$
\theta=\sin ^{-1}(0.6635) \approx 41.57^{\circ} \approx 0.7255
$$

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

$$
\text { If } \sin \theta=k, \text { then } \theta=\sin ^{-1} k
$$

$$
\theta=\sin ^{-1}(0.6635) \approx 41.57^{\circ} \approx 0.7255
$$

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

$$
\text { If } \sin \theta=k, \text { then } \theta=\sin ^{-1} k
$$

$$
\begin{array}{r}
\theta=\sin ^{-1}(0.6635) \approx 41.57^{\circ} \approx \underset{\text { degrees }}{ } 0.7255 \\
\text { radians }
\end{array}
$$

Inverse trigonometric functions

Problem

If θ is an acute angle and $\sin \theta=0.6635$, what is θ ?

If $\sin \theta=k$, then $\theta=\sin ^{-1} k$.

$$
\begin{array}{r}
\theta=\sin ^{-1}(0.6635) \approx 41.57^{\circ} \approx \underset{\text { degrees }}{ } 0.7255 \\
\text { radians }
\end{array}
$$

If $\cos \theta=k$, then $\theta=\cos ^{-1} k$.
If $\tan \theta=k$, then $\theta=\tan ^{-1} k$.

What about csc, sec, and cot?

Use the reciprocal formulas:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

What about csc, sec, and cot?

Use the reciprocal formulas:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Example: $\csc \theta=2$

What about csc, sec, and cot?

Use the reciprocal formulas:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Example: $\csc \theta=2$

Convert to

$$
\frac{1}{\sin \theta}=2
$$

What about csc, sec, and cot?

Use the reciprocal formulas:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Example: $\csc \theta=2$

Convert to

$$
\frac{1}{\sin \theta}=2
$$

Take reciprocal of both sides

$$
\sin \theta=\frac{1}{2}
$$

What about csc, sec, and cot?

Use the reciprocal formulas:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Example: $\csc \theta=2$

Convert to

$$
\frac{1}{\sin \theta}=2
$$

Take reciprocal of both sides

$$
\sin \theta=\frac{1}{2}
$$

Use inverse sine function (also called arcsin or asin)

$$
\theta=\sin ^{-1}\left(\frac{1}{2}\right)
$$

What about csc, sec, and cot?

Use the reciprocal formulas:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Example: $\csc \theta=2$

Convert to

$$
\frac{1}{\sin \theta}=2
$$

Take reciprocal of both sides

$$
\sin \theta=\frac{1}{2}
$$

Use inverse sine function (also called arcsin or asin)

$$
\theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ}
$$

An example of each inverse trig function

```
sin}0=0.
0=\mp@subsup{\operatorname{sin}}{}{-1}(\frac{1}{2})=3\mp@subsup{0}{}{\circ}\approx0.5236
```

An example of each inverse trig function

$$
\begin{aligned}
& \sin \theta=0.5 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=0.5 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472
\end{aligned}
$$

An example of each inverse trig function

$$
\begin{aligned}
& \sin \theta=0.5 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=0.5 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472
\end{aligned}
$$

$\tan \theta=0.5$
$\theta=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.57^{\circ} \approx 0.4636$

An example of each inverse trig function

$$
\begin{aligned}
& \sin \theta=0.5 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236 \\
& \cos \theta=0.5 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472 \\
& \tan \theta=0.5 \\
& \theta=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.57^{\circ} \approx 0.4636
\end{aligned}
$$

$\csc \theta=2$

$\theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236$

An example of each inverse trig function

$$
\begin{aligned}
& \sin \theta=0.5 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236 \\
& \cos \theta=0.5 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472 \\
& \tan \theta=0.5 \\
& \theta=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.57^{\circ} \approx 0.4636
\end{aligned}
$$

$$
\begin{aligned}
& \csc \theta=2 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \sec \theta=2 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472
\end{aligned}
$$

An example of each inverse trig function

$$
\begin{aligned}
& \sin \theta=0.5 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \csc \theta=2 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \sec \theta=2 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472
\end{aligned}
$$

$$
\begin{aligned}
& \cot \theta=2 \\
& \theta=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.57^{\circ} \approx 0.4636
\end{aligned}
$$

An example of each inverse trig function

$$
\begin{aligned}
& \sin \theta=0.5 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \csc \theta=2 \\
& \theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ} \approx 0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \sec \theta=2 \\
& \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \approx 1.0472
\end{aligned}
$$

$$
\begin{aligned}
& \cot \theta=2 \\
& \theta=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.57^{\circ} \approx 0.4636
\end{aligned}
$$

Column on right copies column on left because of reciprocal identites

Since $f(x)=\sin (x)$ is periodic, what is $\sin ^{-1} k$ giving you?

Inverse Sine

If you put $\sin ^{-1} k$ into your calculator, the answer will be an angle

- in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ using radian mode
- in $\left[-90^{\circ}, 90^{\circ}\right]$ in degree mode

Since $f(x)=\sin (x)$ is periodic, what is $\sin ^{-1} k$ giving you?

Inverse Sine

If you put $\sin ^{-1} k$ into your calculator, the answer will be an angle

- in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ using radian mode
- in $\left[-90^{\circ}, 90^{\circ}\right]$ in degree mode

Inverse Cosine

If you put $\cos ^{-1} k$ into your calculator, the answer will be an angle

- in $[0, \pi]$ using radian mode
- in $\left[0,180^{\circ}\right]$ in degree mode

Since $f(x)=\sin (x)$ is periodic, what is $\sin ^{-1} k$ giving you?

Inverse Sine

If you put $\sin ^{-1} k$ into your calculator, the answer will be an angle

- in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ using radian mode
- in $\left[-90^{\circ}, 90^{\circ}\right]$ in degree mode

Inverse Cosine

If you put $\cos ^{-1} k$ into your calculator, the answer will be an angle

- in $[0, \pi]$ using radian mode
- in $\left[0,180^{\circ}\right]$ in degree mode

Inverse Tangent

If you put $\tan ^{-1} k$ into your calculator, the answer will be an angle

- in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ using radian mode
- in $\left(-90^{\circ}, 90^{\circ}\right)$ in degree mode

Examples with negative values

$$
\begin{aligned}
& \sin \theta=-0.5 \\
& \theta=\sin ^{-1}\left(-\frac{1}{2}\right)=-30^{\circ} \approx-0.5236
\end{aligned}
$$

Examples with negative values

$$
\begin{aligned}
& \sin \theta=-0.5 \\
& \theta=\sin ^{-1}\left(-\frac{1}{2}\right)=-30^{\circ} \approx-0.5236
\end{aligned}
$$

$$
\cos \theta=-0.5
$$

$$
\theta=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ} \approx 2.0944
$$

Examples with negative values

$$
\begin{aligned}
& \sin \theta=-0.5 \\
& \theta=\sin ^{-1}\left(-\frac{1}{2}\right)=-30^{\circ} \approx-0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=-0.5 \\
& \theta=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ} \approx 2.0944
\end{aligned}
$$

$$
\tan \theta=-0.5
$$

$$
\theta=\tan ^{-1}\left(-\frac{1}{2}\right) \approx-26.57^{\circ} \approx-0.4636
$$

Examples with negative values

$$
\begin{aligned}
& \sin \theta=-0.5 \\
& \theta=\sin ^{-1}\left(-\frac{1}{2}\right)=-30^{\circ} \approx-0.5236
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=-0.5 \\
& \theta=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ} \approx 2.0944
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=-0.5 \\
& \theta=\tan ^{-1}\left(-\frac{1}{2}\right) \approx-26.57^{\circ} \approx-0.4636
\end{aligned}
$$

If the calculator doesn't give you the angle θ you wanted...
...use reference angles to find the angle you want!

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$

Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$

Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

- Get $\approx-24.8^{\circ}$.

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$
Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

- Get $\approx-24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta<360^{\circ}$.

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$

Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

- Get $\approx-24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta<360^{\circ}$.

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$
Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

- Get $\approx-24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta<360^{\circ}$.

Solution: \tan is 180°-periodic:

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$
Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

- Get $\approx-24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta<360^{\circ}$.

Solution: \tan is 180°-periodic:

- Add 180° to -24.8°
- $\theta=155.2^{\circ}$

Find θ such that $\tan \theta=-0.4623$ and $0^{\circ} \leq \theta<360^{\circ}$
Putting $\tan ^{-1}(-0.4623)$ in the calculator (in degree mode).

- Get $\approx-24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta<360^{\circ}$.

Solution: \tan is 180°-periodic:

- Add 180° to -24.8°
- $\theta=155.2^{\circ}$
- Add 180° to 155.2°
- $\theta=335.2^{\circ}$

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$
Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$
Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$

Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.
- Since 1.9651 is between 0 and π, reference angle is $\approx \pi-1.9651 \approx 1.1765$

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$

Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.
- Since 1.9651 is between 0 and π, reference angle is $\approx \pi-1.9651 \approx 1.1765$

$\theta \approx 1.9651$ is a solution.

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$

Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.
- Since 1.9651 is between 0 and π, reference angle is $\approx \pi-1.9651 \approx 1.1765$

$\theta \approx 1.9651$ is a solution.

Find another θ with the same x value?

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$

Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.
- Since 1.9651 is between 0 and π, reference angle is $\approx \pi-1.9651 \approx 1.1765$

$\theta \approx 1.9651$ is a solution.

Find another θ with the same x value?

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$

Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.
- Since 1.9651 is between 0 and π, reference angle is $\approx \pi-1.9651 \approx 1.1765$

$$
\theta \approx 1.9651 \text { is a solution. }
$$

Find another θ with the same x value?

Find θ such that $\cos \theta=-0.3842$ and $0 \leq \theta<2 \pi$
Putting $\cos ^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651.
- Since 1.9651 is between 0 and π, reference angle is $\approx \pi-1.9651 \approx 1.1765$

$\theta \approx 1.9651$ is a solution.

Find another θ with the same x value?
$\theta \approx \pi+1.1765 \approx 4.3180$ is a second solution

Main idea

Use the symmetry in the circle with \pm to get sin, cos, tan

Main idea

Use the symmetry in the circle with \pm to get sin, cos, tan

The angles which have related x and y value have the same reference angle!

[^0]: ${ }^{1}$ Nonquadrantal means that θ is not a multiple of 90°.

[^1]: ${ }^{1}$ Nonquadrantal means that θ is not a multiple of 90°.

