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Let’s test it out! Choose:

Compute derivatives:

flle) =32 ¢'(x) =102"  K'(2) = [f(z) g(2)]' = 132"

Compare:
> [f(z) g(x)] = 132"
> f'(x) g (x) = (327)(102") = 302!



Is [f(z) g(z)]" = f'(x) ¢'(x) the Product Rule?

Let’s test it out! Choose:

Compute derivatives:

fllz) =32 ¢'(x) =102"  K'(2) = [f(2) g(2)]' = 132"

Compare:

> [f(x) g(x)) = 132"
> f(x)g'(x) = (32%)(1027) = 30"

No! This is NOT the Product Rule!

[f (@) g(@)]" # f'(z) g’ (z)
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Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of

r = 7.75 per hour for h = 20 hours each
week. Your take-home pay is p = rh. How
can your take-home pay go up?

> Pay rate goes up: r ~ Thew
Thew =T + AT

[ S =
Culver’s in Onalaska, WI » Hours per week goes up: h ~~ hApew
Source: Wikipedia hnew =h+ AR

» Both r and & increase
> Pold =Th
> Dnew = Tnew fnew = (7 + Ar)(h + Ah)
» Change in pay Ap = Pnew — Pold = (1 + Ar)(h + Ah) — rh =
(rh+rAh+ hAr+ Ar Ah) —rh
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Intuitive idea of the Product Rule

Ar

h Ah

Ap = (rh+rAh+ hAr+ Ar Ah) —rh

Ap=rAh+ hAr+ Ar Ah
negligible
Ap~rAh+ hAr

The change in the product p = rh is the old rate r times the
change in hours (Ah), plus the old hours h times the change in
rate (Ar).
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Starting with differentiable functions f(z) and g(x), we want to
get the derivative of f(x) g(x).

By definition of derivative,

[f(x) g(x)]’ - }1113%) flz+h)g(x +hh) — f(z)g(x)

Subtract and add f(z + h) g(x) in the numerator:

L f@ e hg(e+h) = fz+h) gla) + f@+h) g(w) = f(x)g(@)
h—0 h

Sum law for limits

o fa et Rgla £ h) — f+ Wg(@) |+ )g@)  F)ale)
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Continued...
From previous slide, [f(z) g(x)]

"is equal to:

flz+h)g(x+h) - flx+h)g(x)

e n M= n
Factor:
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so f is cts does not
so this =f(z) depend on h

f@)g'(x) + g(z) f'(2)



The Product Law for Derivatives

If f= f(x)and g = g(z) are differentiable, the derivative of the
product is given by:

The Product Law: in Newton notation

[f(@)g(@)]" = f(2) g'(x) + g(2) f'(x)

The Product Law: in Leibniz notation

_,dg df
%[fg] —f% —i—g%
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The derivative of the product was k'(z) = 13z!2.

Using the Product Rule...
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d
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in either notation,

10212 + 3212

= 1322
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Example

Exercise: Let k(z) = (2% + 1)(2® + 5x). Differentiate k(z).
Solution:
» k(z) = f(z) g(x), where f(z) = 22 + 1 and g(z) = 2 + 5a.
» f'(r) =2z and ¢'(v) = 322 + 5.

K(z) = f(z)g'(x) + g(z) f'(2)
= (2% 4+ 1)(32% +5) + (2* 4 52)(22)
=52t +1822 +5

Solution 2:
» FOIL out k(z) to get k(z) = 2° + 623 + bz
» Sum Rule and Power Rule: k/(z) = 5z + 1822 + 5
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Example [B]

d |1
Exercise: Find — | — (22 +¢)|.
xercise: Find o [m(a: +e )]

11



Example [B]

d |1
E ise: Find — | = (22 + &%) |.
xercise: Find T [x(g; +e )]

Solution:

> f(z) =1 and g(z) = 2? + ¢°

@) = 12 4 g%
1 d
T rdr
1d

xd:c

1
=~z +e") + (2 + ") (—1a?
X

ER +e]+(:c2+e“)di[

g

[z +e"] + (a® +e )di [z71]
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Example [B]

. d
Exercise: If y = z%¢%, find =2
dx

In other words, find ¢/ and 3”.

and

d2y

dx?’
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Example [B]

. d &2
Exercise: If y = 3¢, find % and d%;.

In other words, find ¢/ and 3”.

Solution:
>y = (23)(e?) + (2%)(e¥) = 23e® + 3a%e”
>y’ = 2% + (32%)(e?)] =
(e + 32%%) + (32) () + (322) (¢7)
> o = 23 + 32%e® + 3x2e® + 62e” = x3e” + 622e” + 6xe”
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Example [B]

Exercise: What is the derivative of f(z) = v/z(3z +2)?
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Example [B]

Exercise: What is the derivative of f(z) = v/z(3z +2)?

Solution:

f(2) = (Va)(3z +2)' + (Vo) (3 + 2) = V(3) + 35z (32 +2)

3xr+2

=3Vz + NG
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Exercise: What is the derivative of f(z) = (z + 1)(22 — 7x)(e%)?

14



Example [B]

Exercise: What is the derivative of f(z) = (z + 1)(22 — 7x)(e%)?

Solution:
» Think of f as being: [(x + 1)(2? — Tz)][¢?]

fr=1Ma+1)(@® - 7))[e"] + [(w +1)(2? — 7)][e”]
1)(a? 796) (z+1)(2? 796)} "]+ [(z+1) (2 = 72)][e"]'

= |(z+
[(x +1)(22 —7) + (1) (2? — 7x)] [e] + [(z 4+ 1)(2? — Tz)][e"]

» First break the function of three factors into two factors: a
“super factor” and a regular factor, then use the Product Rule
twice

> Or, use the “Triple Product Rule”, proved by doing Product
Rule twice on a generic “super factor”

14



Example

Exercise: If k(z) = f(x) - g(x) and
> f(2)=3
> [1(2) =4
> g(2) =1
> 9'(2) =5
then find £/(2).
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Example

Exercise: If k(z) = f(x) - g(x) and
> f(2)=3
> [1(2) =4
> g(2) =1
> 9'(2) =5
then find £/(2).

Solution:
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Example

Exercise: If k(z) = f(x) - g(x) and
> f(2)=3
> [1(2) =4
> g(2) =1
> 9'(2) =5
then find £/(2).

Solution:
> Use k'(z) = f(z) g'(z) + g(=) f'(z), plug in z =2
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Example

Exercise: If k(z) = f(x) - g(x) and
> f(2)=3
> [1(2) =4
> g(2) =1
> 9'(2) =5
then find £/(2).

Solution:
> Use k'(z) = f(z) g'(z) + g(=) f'(z), plug in z =2

K(2) = f(2)4'(2) +9(2) £'(2)
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Example

Exercise: If k(z) = f(x) - g(x) and
> f(2)=3
> [1(2) =4
> g(2) =1
> 9'(2) =5
then find £/(2).

Solution:

> Use K'(z) = f(x) g'(x) + g(z) f'(x), plug in z =2
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Example

Exercise: If k(z) = f(x) - g(x) and
> f(2)=3
> [1(2) =4
> g(2) =1
> 9'(2) =5
then find £/(2).

Solution:
> Use k'(z) = f(z) g'(z) + g(=) f'(z), plug in z =2

K(2) = f(2)4'(2) +9(2) £'(2)
=(3)(5) + (D)(=4)

15



Example [B]

Exercise: Differentiate f(z) = (10)(x%)
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Example [B]

Exercise: Differentiate f(z) = (10)(x%)

. df d 6 d g
Solution: i [10] - (=°) + (10) . [z°]
which simplifies 0 - (z%) + (10)62° = 60x°
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Example [B]

Exercise: Differentiate f(z) = (10)(x%)

. df d 6 d g
Solution: i [10] - (=°) + (10) . [z°]
which simplifies 0 - (z%) + (10)62° = 60x°

FASTER SOLUTION: - [10;]56} _10% [336] —10-62° = 602°
dx dx
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Example [B]

Exercise: Differentiate f(z) = (10)(x%)

.df d 6 d
| : L = [10] - 10)— -
Solution Iz dx[ 0] - (=°) +( O)dx [z°]
which simplifies 0 - (z%) + (10)62° = 60x°
FASTER SOLUTION: - [10956} _ 102 [g;6] — 10 62° = 602
dx dx

Time-saving tip!

Just because you can use the Product Rule doesn’t mean that you
always should.

> If one of your factors is just a constant, then SAVE SOME
TIME by using the Constant Multiple Rule instead!!!

16



