The product rule for differentation

E. Kim

Product Rule for Differentiation

Goal

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

Product Rule for Differentiation

Goal

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

Previously, we saw [f(x) + g(x)]' = f'(x) + g'(x) "Sum Rule"

Product Rule for Differentiation

Goal

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

Previously, we saw [f(x) + g(x)]' = f'(x) + g'(x) "Sum Rule"

Question

Is the Product Rule

$$[f(x) g(x)]' = f'(x) g'(x)$$

or not?

$$f(x) = x^3$$

$$f(x) = x^3 \qquad \qquad g(x) = x^{10}$$

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Compute derivatives:

f'(x) =

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

$$f'(x) = 3x^2$$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

$$f'(x) = 3x^2 \qquad g'(x) =$$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$

Let's test it out! Choose:

 $f(x) = x^3$ $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$ $k'(x) = [f(x)g(x)]' =$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$ $k'(x) = [f(x)g(x)]' = 13x^{12}$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Compute derivatives:

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$ $k'(x) = [f(x)g(x)]' = 13x^{12}$

Compare:

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Compute derivatives:

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$ $k'(x) = [f(x)g(x)]' = 13x^{12}$

Compare:

•
$$[f(x) g(x)]' = 13x^{12}$$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Compute derivatives:

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$ $k'(x) = [f(x)g(x)]' = 13x^{12}$

Compare:

•
$$[f(x) g(x)]' = 13x^{12}$$

• $f'(x) g'(x) = (3x^2)(10x^9) = 30x^{11}$

Let's test it out! Choose:

$$f(x) = x^3$$
 $g(x) = x^{10}$ $k(x) = f(x) \cdot g(x) = x^{13}$

Compute derivatives:

$$f'(x) = 3x^2$$
 $g'(x) = 10x^9$ $k'(x) = [f(x)g(x)]' = 13x^{12}$

Compare:

No! This is NOT the Product Rule!

 $[f(x) g(x)]' \neq f'(x) g'(x)$

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI *Source: Wikipedia*

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI *Source: Wikipedia*

Say you worked at Culver's at a rate of r = 7.75 per hour for h = 20 hours each week. Your take-home pay is p = rh. How can your take-home pay go up?

► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI Source: Wikipedia

- ► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$
- ► Hours per week goes up: $h \rightsquigarrow h_{new}$ $h_{new} = h + \Delta h$

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI Source: Wikipedia

- ► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$
- ► Hours per week goes up: $h \rightsquigarrow h_{new}$ $h_{new} = h + \Delta h$
- Both r and h increase

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI Source: Wikipedia

▶
$$p_{\text{old}} = rh$$

- ► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$
- ► Hours per week goes up: $h \rightsquigarrow h_{new}$ $h_{new} = h + \Delta h$
- Both r and h increase

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI Source: Wikipedia

- ► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$
- ► Hours per week goes up: $h \rightsquigarrow h_{new}$ $h_{new} = h + \Delta h$
- Both r and h increase

$$\blacktriangleright p_{\rm old} = rh$$

►
$$p_{\text{new}} = r_{\text{new}} h_{\text{new}} = (r + \Delta r)(h + \Delta h)$$

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI Source: Wikipedia

- ► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$
- ► Hours per week goes up: $h \rightsquigarrow h_{new}$ $h_{new} = h + \Delta h$
- Both r and h increase

$$\blacktriangleright p_{\rm old} = rh$$

- ► $p_{\text{new}} = r_{\text{new}} h_{\text{new}} = (r + \Delta r)(h + \Delta h)$
- ▶ Change in pay $\Delta p = p_{new} p_{old} = (r + \Delta r)(h + \Delta h) rh$

Intuitively... it's like working at Culver's

Culver's in Onalaska, WI Source: Wikipedia

- ► Pay rate goes up: $r \rightsquigarrow r_{new}$ $r_{new} = r + \Delta r$
- ► Hours per week goes up: $h \rightsquigarrow h_{new}$ $h_{new} = h + \Delta h$
- Both r and h increase

$$\blacktriangleright p_{\rm old} = rh$$

- ► $p_{\text{new}} = r_{\text{new}} h_{\text{new}} = (r + \Delta r)(h + \Delta h)$
- ► Change in pay $\Delta p = p_{\text{new}} p_{\text{old}} = (r + \Delta r)(h + \Delta h) rh = (rh + r\Delta h + h\Delta r + \Delta r\Delta h) rh$

Δr	$h\Delta r$	$\Delta r \Delta h$
r	rh	$r\Delta h$
	h	Δh

$$\Delta p = (rh + r\,\Delta h + h\,\Delta r + \Delta r\,\Delta h) - rh$$

$$\Delta p = (\mathbf{rh} + r\,\Delta h + h\,\Delta r + \Delta r\,\Delta h) - \mathbf{rh}$$

$$\Delta p = (\mathbf{rh} + \mathbf{r}\,\Delta h + h\,\Delta r + \Delta r\,\Delta h) - \mathbf{rh}$$
$$\Delta p = \mathbf{r}\,\Delta h + h\,\Delta r + \underline{\Delta r}\,\Delta h$$

$$\Delta p = (\mathbf{rh} + \mathbf{r}\,\Delta h + h\,\Delta r + \Delta r\,\Delta h) - \mathbf{rh}$$
$$\Delta p = \mathbf{r}\,\Delta h + h\,\Delta r + \underbrace{\Delta r\,\Delta h}_{\text{negligible}}$$

$$\Delta p = (\mathbf{rh} + \mathbf{r}\,\Delta h + h\,\Delta r + \Delta r\,\Delta h) - \mathbf{rh}$$
$$\Delta p = \mathbf{r}\,\Delta h + h\,\Delta r + \underbrace{\Delta r\,\Delta h}_{\mathsf{negligible}}$$

$$\Delta p \approx r \,\Delta h + h \,\Delta r$$

The change in the product p = rh is the old rate r times the change in hours (Δh) , plus the old hours h times the change in rate (Δr) .

Deriving the Product Rule

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

Deriving the Product Rule

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

By definition of derivative,

$$[f(x) g(x)]' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

Deriving the Product Rule

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

By definition of derivative,

$$[f(x) g(x)]' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

Subtract and add f(x+h) g(x) in the numerator:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$
Deriving the Product Rule

Starting with differentiable functions f(x) and g(x), we want to get the derivative of f(x) g(x).

By definition of derivative,

$$[f(x) g(x)]' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

Subtract and add f(x+h) g(x) in the numerator:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

Sum law for limits

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{h\to 0} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{h\to 0} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{h\to 0} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h\to 0}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{f \text{ is diff.}} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{f \text{ is diff.}} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{ or } f(x+h) - f(x)} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h \text{$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{\substack{f \text{ is diff.},\\\text{ so } f \text{ is cts}}} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{f \text{ is diff.}} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{h\to 0} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h\to 0}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{\substack{f \text{ is diff.},\\ \text{ so } f \text{ is cts}\\ \text{ so this } = f(x)}} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{f \text{ is diff.}} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{h\to 0} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{h\to 0}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h) (g(x+h) - g(x))}{h} + \lim_{h \to 0} \frac{g(x) (f(x+h) - f(x))}{h}$$

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{\substack{f \text{ is diff.},\\ \text{ so } f \text{ is cts}\\ \text{ so this } = f(x)}} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{\substack{f \text{ (s diff.},\\ \text{ so this } = f(x)}} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{\substack{g(x), \text{ since}\\ \text{ does not}\\ \text{ depend on } h}} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{\substack{g(x), \text{ since}\\ \text{ does not}\\ \text{ depend on } h}}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{\substack{f \text{ is diff.},\\ \text{ so } f \text{ is cts}\\ \text{ so this } = f(x)}} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{g'(x), \text{ by defn. of deriv.}} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{\substack{eg(x), \text{ since}\\ \text{ does not}\\ \text{ depend on } h}} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{f'(x), \text{ by defn. of deriv.}}$$

From previous slide, [f(x) g(x)]' is equal to:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}$$

Factor:

$$\lim_{h \to 0} \frac{f(x+h)\big(g(x+h) - g(x)\big)}{h} + \lim_{h \to 0} \frac{g(x)\big(f(x+h) - f(x)\big)}{h}$$

Product law for limits

$$\underbrace{\left(\lim_{h\to 0} f(x+h)\right)}_{\substack{f \text{ is diff.},\\ \text{ so } f \text{ is cts}\\ \text{ so this } = f(x)}} \underbrace{\left(\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}\right)}_{g'(x), \text{ by defn. of deriv.}} + \underbrace{\left(\lim_{h\to 0} g(x)\right)}_{\substack{=g(x), \text{ since}\\ \text{ does not}\\ \text{ depend on } h}} \underbrace{\left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right)}_{f'(x), \text{ by defn. of deriv.}}$$

f(x) g'(x) + g(x) f'(x)

The Product Law for Derivatives

If $f=f(\boldsymbol{x})$ and $g=g(\boldsymbol{x})$ are differentiable, the derivative of the product is given by:

The Product Law: in Newton notation

$$[f(x)g(x)]' = f(x)g'(x) + g(x)f'(x)$$

The Product Law: in Leibniz notation

$$\frac{d}{dx}[fg] = f\frac{dg}{dx} + g\frac{df}{dx}$$

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$.

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Using the Product Rule ...

...in Newton notation [f(x)g(x)]' f(x)g'(x) + g(x)f'(x) $(x^3)(10x^9) + (x^{10})(3x^2)$

in Leibniz notation
$rac{d}{dx}[fg]$
$frac{dg}{dx} + grac{df}{dx}$
$(x^3)(10x^9) + (x^{10})(3x^2)$

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Using the Product Rule ...

in Newton notation
[f(x)g(x)]'
$\frac{f(x)}{g'(x)} + g(x) f'(x)$
$(x^3)(10x^9) + (x^{10})(3x^2)$

in Leibniz notation
$rac{d}{dx}[fg]$
$f {dg \over dx} + g {df \over dx}$
$(x^3)(10x^9) + (x^{10})(3x^2)$

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Using the Product Rule ...

in Newton notation
[f(x)g(x)]'
f(x) g'(x) + g(x) f'(x)
$(x^3)(10x^9) + (x^{10})(3x^2)$

in Leibniz notation
$rac{d}{dx}[fg]$
$frac{dg}{dx} + grac{df}{dx}$
$(x^3)(10x^9) + (x^{10})(3x^2)$

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Using the Product Rule ...

...in Newton notation [f(x)g(x)]' f(x)g'(x) + g(x)f'(x) $(x^3)(10x^9) + (x^{10})(3x^2)$

in Leibniz notation
$rac{d}{dx}[fg]$
$frac{dg}{dx} + rac{g}{g}rac{df}{dx}$
$(x^3)(10x^9) + (x^{10})(3x^2)$

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Using the Product Rule ...

...in Newton notation [f(x)g(x)]' f(x)g'(x) + g(x)f'(x) $(x^3)(10x^9) + (x^{10})(3x^2)$

in Leibniz notation
$\frac{d}{dx}[fg]$
$f\frac{dg}{dx} + g\frac{df}{dx}$
$(x^3)(10x^9) + (x^{10})(3x^2)$

Earlier, had $f(x) = x^3$, $g(x) = x^{10}$, and $k(x) = f(x) g(x) = x^{13}$. The derivative of the product was $k'(x) = 13x^{12}$.

Using the Product Rule ...

...in Leibniz notation $\frac{d}{dx}[fg]$ $f\frac{dg}{dx} + g\frac{df}{dx}$ $(x^{3})(10x^{9}) + (x^{10})(3x^{2})$

in either notation,

$$10x^{12} + 3x^{12} = 13x^{12}$$

•
$$k(x) = f(x) g(x)$$
, where

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$

►
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$
= $5x^4 + 18x^2 + 5$

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$
= $5x^4 + 18x^2 + 5$

Solution 2:

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$
= $5x^4 + 18x^2 + 5$

Solution 2:

FOIL out
$$k(x)$$
 to get $k(x) = x^5 + 6x^3 + 5x$

Exercise: Let $k(x) = (x^2 + 1)(x^3 + 5x)$. Differentiate k(x). Solution:

▶
$$k(x) = f(x) g(x)$$
, where $f(x) = x^2 + 1$ and $g(x) = x^3 + 5x$.
▶ $f'(x) = 2x$ and $g'(x) = 3x^2 + 5$.

$$k'(x) = f(x) g'(x) + g(x) f'(x)$$

= $(x^2 + 1)(3x^2 + 5) + (x^3 + 5x)(2x)$
= $5x^4 + 18x^2 + 5$

Solution 2:

- FOIL out k(x) to get $k(x) = x^5 + 6x^3 + 5x$
- Sum Rule and Power Rule: $k'(x) = 5x^4 + 18x^2 + 5$

Example [B]

Exercise: Find
$$\frac{d}{dx}\left[\frac{1}{x}(x^2+e^x)\right]$$
.
Exercise: Find
$$\frac{d}{dx}\left[\frac{1}{x}(x^2+e^x)\right]$$
.

•
$$f(x) = \frac{1}{x}$$
 and $g(x) = x^2 + e^x$

$$\begin{split} \frac{d}{dx} \left[f(x) \, g(x) \right) &= f \frac{dg}{dx} + g \frac{df}{dx} \\ &= \frac{1}{x} \frac{d}{dx} \left[x^2 + e^x \right] + (x^2 + e^x) \frac{d}{dx} \left[\frac{1}{x} \right] \\ &= \frac{1}{x} \frac{d}{dx} \left[x^2 + e^x \right] + (x^2 + e^x) \frac{d}{dx} \left[x^{-1} \right] \\ &= \frac{1}{x} (2x + e^x) + (x^2 + e^x)(-1x^{-2}) \end{split}$$

Exercise: If
$$y = x^3 e^x$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
In other words, find y' and y'' .

Exercise: If $y = x^3 e^x$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

In other words, find y' and y''.

Exercise: What is the derivative of $f(x) = \sqrt{x}(3x+2)$?

Exercise: What is the derivative of $f(x) = \sqrt{x}(3x+2)$?

Solution: $f'(x) = (\sqrt{x})(3x+2)' + (\sqrt{x})'(3x+2) = \sqrt{x}(3) + \frac{1}{2\sqrt{x}}(3x+2)$ $= 3\sqrt{x} + \frac{3x+2}{2\sqrt{x}}$

Exercise: What is the derivative of $f(x) = (x+1)(x^2 - 7x)(e^x)$?

Exercise: What is the derivative of $f(x) = (x + 1)(x^2 - 7x)(e^x)$? Solution:

• Think of f as being: $[(x+1)(x^2-7x)][e^x]$

$$\begin{aligned} f' &= [(x+1)(x^2-7x)]'[e^x] + [(x+1)(x^2-7x)][e^x]' \\ &= \left[(x+1)(x^2-7x)' + (x+1)'(x^2-7x) \right] [e^x] + [(x+1)(x^2-7x)][e^x]' \\ &= \left[(x+1)(2x-7) + (1)(x^2-7x) \right] [e^x] + [(x+1)(x^2-7x)][e^x] \end{aligned}$$

- First break the function of three factors into two factors: a "super factor" and a regular factor, then use the Product Rule twice
- Or, use the "Triple Product Rule", proved by doing Product Rule twice on a generic "super factor"

Exercise: If $k(x) = f(x) \cdot g(x)$ and • f(2) = 3• f'(2) = -4• g(2) = 1• g'(2) = 5then find k'(2).

Exercise: If $k(x) = f(x) \cdot g(x)$ and • f(2) = 3• f'(2) = -4• g(2) = 1• g'(2) = 5

then find k'(2).

Exercise: If $k(x) = f(x) \cdot g(x)$ and • f(2) = 3• f'(2) = -4• g(2) = 1• g'(2) = 5

then find k'(2).

• Use
$$k'(x) = f(x) g'(x) + g(x) f'(x)$$
, plug in $x = 2$

Exercise: If $k(x) = f(x) \cdot g(x)$ and • f(2) = 3• f'(2) = -4• g(2) = 1• g'(2) = 5

then find k'(2).

• Use
$$k'(x) = f(x) g'(x) + g(x) f'(x)$$
, plug in $x = 2$
 $k'(2) = f(2) g'(2) + g(2) f'(2)$

Exercise: If $k(x) = f(x) \cdot g(x)$ and • f(2) = 3• f'(2) = -4• g(2) = 1• g'(2) = 5then find k'(2).

с. н. ··

• Use
$$k'(x) = f(x) g'(x) + g(x) f'(x)$$
, plug in $x = 2$
 $k'(2) = f(2) g'(2) + g(2) f'(2)$
 $= (3)(5) + (1)(-4)$

Exercise: If $k(x) = f(x) \cdot g(x)$ and • f(2) = 3• f'(2) = -4• g(2) = 1• g'(2) = 5then find k'(2).

• Use
$$k'(x) = f(x) g'(x) + g(x) f'(x)$$
, plug in $x = 2$
 $k'(2) = f(2) g'(2) + g(2) f'(2)$
 $= (3)(5) + (1)(-4)$
 $= 11$

Exercise: Differentiate $f(x) = (10)(x^6)$

Exercise: Differentiate $f(x) = (10)(x^6)$

Solution:
$$\frac{df}{dx} = \frac{d}{dx}[10] \cdot (x^6) + (10)\frac{d}{dx} \cdot [x^6]$$

which simplifies $0 \cdot (x^6) + (10)6x^5 = 60x^5$

Exercise: Differentiate $f(x) = (10)(x^6)$

 $\begin{array}{l} \mbox{Solution:} \ \frac{df}{dx} = \frac{d}{dx} [10] \cdot (x^6) + (10) \frac{d}{dx} \cdot [x^6] \\ \mbox{which simplifies} \ 0 \cdot (x^6) + (10) 6x^5 = 60x^5 \end{array}$

FASTER SOLUTION:
$$\frac{d}{dx} \left[10x^6 \right] = 10 \frac{d}{dx} \left[x^6 \right] = 10 \cdot 6x^5 = 60x^5$$

Exercise: Differentiate $f(x) = (10)(x^6)$

 $\begin{array}{l} \mbox{Solution:} \ \frac{df}{dx} = \frac{d}{dx} [10] \cdot (x^6) + (10) \frac{d}{dx} \cdot [x^6] \\ \mbox{which simplifies} \ 0 \cdot (x^6) + (10) 6x^5 = 60x^5 \end{array}$

FASTER SOLUTION:
$$\frac{d}{dx} \left[10x^6 \right] = 10 \frac{d}{dx} \left[x^6 \right] = 10 \cdot 6x^5 = 60x^5$$

Time-saving tip!

Just because you **can** use the Product Rule doesn't mean that you always **should**.

If one of your factors is just a constant, then SAVE SOME TIME by using the Constant Multiple Rule instead!!!