The product rule for differentation

E. Kim

Product Rule for Differentiation

Goal

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.

Product Rule for Differentiation

Goal

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.

Previously, we saw $[f(x)+g(x)]^{\prime}=f^{\prime}(x)+g^{\prime}(x) \quad$ "Sum Rule"

Product Rule for Differentiation

Goal

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.

Previously, we saw $[f(x)+g(x)]^{\prime}=f^{\prime}(x)+g^{\prime}(x) \quad$ "Sum Rule"

Question

Is the Product Rule

$$
[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)
$$

or not?

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:
$f(x)=x^{3}$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?
Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10}
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2}
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9}
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9} \quad k^{\prime}(x)=[f(x) g(x)]^{\prime}=
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9} \quad k^{\prime}(x)=[f(x) g(x)]^{\prime}=13 x^{12}
$$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9} \quad k^{\prime}(x)=[f(x) g(x)]^{\prime}=13 x^{12}
$$

Compare:

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10}
$$

$$
k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9} \quad k^{\prime}(x)=[f(x) g(x)]^{\prime}=13 x^{12}
$$

Compare:

- $[f(x) g(x)]^{\prime}=13 x^{12}$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?

Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9} \quad k^{\prime}(x)=[f(x) g(x)]^{\prime}=13 x^{12}
$$

Compare:

- $[f(x) g(x)]^{\prime}=13 x^{12}$
- $f^{\prime}(x) g^{\prime}(x)=\left(3 x^{2}\right)\left(10 x^{9}\right)=30 x^{11}$

Is $[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x)$ the Product Rule?
Let's test it out! Choose:

$$
f(x)=x^{3} \quad g(x)=x^{10} \quad k(x)=f(x) \cdot g(x)=x^{13}
$$

Compute derivatives:

$$
f^{\prime}(x)=3 x^{2} \quad g^{\prime}(x)=10 x^{9} \quad k^{\prime}(x)=[f(x) g(x)]^{\prime}=13 x^{12}
$$

Compare:

- $[f(x) g(x)]^{\prime}=13 x^{12}$
- $f^{\prime}(x) g^{\prime}(x)=\left(3 x^{2}\right)\left(10 x^{9}\right)=30 x^{11}$

No! This is NOT the Product Rule!

$[f(x) g(x)]^{\prime} \neq f^{\prime}(x) g^{\prime}(x)$

Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

Culver's in Onalaska, WI Source: Wikipedia

Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

- Hours per week goes up: $h \rightsquigarrow h_{\text {new }}$

$$
h_{\text {new }}=h+\Delta h
$$

Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

- Hours per week goes up: $h \rightsquigarrow h_{\text {new }}$ $h_{\text {new }}=h+\Delta h$
- Both r and h increase

Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

- Hours per week goes up: $h \rightsquigarrow h_{\text {new }}$ $h_{\text {new }}=h+\Delta h$
- Both r and h increase
- $p_{\text {old }}=r h$

Then what is the Product Rule?

Intuitively... it's like working at Culver's

Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

- Hours per week goes up: $h \rightsquigarrow h_{\text {new }}$ $h_{\text {new }}=h+\Delta h$
- Both r and h increase
- $p_{\text {old }}=r h$
- $p_{\text {new }}=r_{\text {new }} h_{\text {new }}=(r+\Delta r)(h+\Delta h)$

Then what is the Product Rule?

Intuitively... it's like working at Culver's
Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

- Hours per week goes up: $h \rightsquigarrow h_{\text {new }}$ $h_{\text {new }}=h+\Delta h$
- Both r and h increase
- $p_{\text {old }}=r h$
- $p_{\text {new }}=r_{\text {new }} h_{\text {new }}=(r+\Delta r)(h+\Delta h)$
- Change in pay $\Delta p=p_{\text {new }}-p_{\text {old }}=(r+\Delta r)(h+\Delta h)-r h$

Then what is the Product Rule?

Intuitively... it's like working at Culver's
Say you worked at Culver's at a rate of $r=7.75$ per hour for $h=20$ hours each week. Your take-home pay is $p=r h$. How can your take-home pay go up?

- Pay rate goes up: $r \rightsquigarrow r_{\text {new }}$

$$
r_{\text {new }}=r+\Delta r
$$

- Hours per week goes up: $h \rightsquigarrow h_{\text {new }}$

$$
h_{\text {new }}=h+\Delta h
$$

- Both r and h increase
- $p_{\text {old }}=r h$
- $p_{\text {new }}=r_{\text {new }} h_{\text {new }}=(r+\Delta r)(h+\Delta h)$
- Change in pay $\Delta p=p_{\text {new }}-p_{\text {old }}=(r+\Delta r)(h+\Delta h)-r h=$ $(r h+r \Delta h+h \Delta r+\Delta r \Delta h)-r h$

Intuitive idea of the Product Rule

$$
\Delta p=(r h+r \Delta h+h \Delta r+\Delta r \Delta h)-r h
$$

Intuitive idea of the Product Rule

$$
\Delta p=(r h+r \Delta h+h \Delta r+\Delta r \Delta h)-r h
$$

Intuitive idea of the Product Rule

$$
\begin{gathered}
\Delta p=(r h+r \Delta h+h \Delta r+\Delta r \Delta h)-r h \\
\Delta p=r \Delta h+h \Delta r+\underbrace{\Delta r \Delta h}
\end{gathered}
$$

Intuitive idea of the Product Rule

$$
\begin{gathered}
\Delta p=(r h+r \Delta h+h \Delta r+\Delta r \Delta h)-r h \\
\Delta p=r \Delta h+h \Delta r+\underbrace{\Delta r \Delta h}_{\text {negligible }}
\end{gathered}
$$

Intuitive idea of the Product Rule

$$
\Delta p=(r h+r \Delta h+h \Delta r+\Delta r \Delta h)-r h
$$

$$
\Delta p=r \Delta h+h \Delta r+\underbrace{\Delta r \Delta h}_{\text {negligible }}
$$

$$
\Delta p \approx r \Delta h+h \Delta r
$$

The change in the product $p=r h$ is the old rate r times the change in hours (Δh), plus the old hours h times the change in rate (Δr).

Deriving the Product Rule

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.

Deriving the Product Rule

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.
By definition of derivative,

$$
[f(x) g(x)]^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}
$$

Deriving the Product Rule

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.
By definition of derivative,

$$
[f(x) g(x)]^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}
$$

Subtract and add $f(x+h) g(x)$ in the numerator:

$$
\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)+f(x+h) g(x)-f(x) g(x)}{h}
$$

Deriving the Product Rule

Starting with differentiable functions $f(x)$ and $g(x)$, we want to get the derivative of $f(x) g(x)$.
By definition of derivative,

$$
[f(x) g(x)]^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}
$$

Subtract and add $f(x+h) g(x)$ in the numerator:

$$
\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)+f(x+h) g(x)-f(x) g(x)}{h}
$$

Sum law for limits

$$
\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}
$$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$
Factor:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}
$$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$
Factor:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}
$$

Product law for limits
$\underbrace{\left(\lim _{h \rightarrow 0} f(x+h)\right)} \underbrace{\left(\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right)}+\underbrace{\left(\lim _{h \rightarrow 0} g(x)\right)} \underbrace{\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)}$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$
Factor:
$\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}$
Product law for limits
$\underbrace{\left(\lim _{h \rightarrow 0} f(x+h)\right)}_{f \text { is diff., }} \underbrace{\left(\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right)}+\underbrace{\left(\lim _{h \rightarrow 0} g(x)\right)} \underbrace{\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)}$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$
Factor:
$\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}$
Product law for limits

$$
\underbrace{\left(\lim _{h \rightarrow 0} f(x+h)\right)}_{\substack{f \text { is diff., } \\ \text { so } f \text { is cts }}} \underbrace{\left(\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right)}+\underbrace{\left(\lim _{h \rightarrow 0} g(x)\right)} \underbrace{\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)}
$$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$
Factor:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}
$$

Product law for limits

$$
\underbrace{\left(\lim _{h \rightarrow 0} f(x+h)\right)}_{\begin{array}{c}
f \text { is diff., } \\
\text { so } f \text { is cts } \\
\text { so this }=f(x)
\end{array}} \underbrace{\left(\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right)}+\underbrace{\left(\lim _{h \rightarrow 0} g(x)\right)} \underbrace{\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)}
$$

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$

Factor:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}
$$

Product law for limits

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$

Factor:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}
$$

Product law for limits

Continued...

From previous slide, $[f(x) g(x)]^{\prime}$ is equal to:
$\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h}$

Factor:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)(g(x+h)-g(x))}{h}+\lim _{h \rightarrow 0} \frac{g(x)(f(x+h)-f(x))}{h}
$$

Product law for limits

$$
f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

The Product Law for Derivatives

If $f=f(x)$ and $g=g(x)$ are differentiable, the derivative of the product is given by:

The Product Law: in Newton notation

$$
[f(x) g(x)]^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

The Product Law: in Leibniz notation

$$
\frac{d}{d x}[f g]=f \frac{d g}{d x}+g \frac{d f}{d x}
$$

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$.

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Using the Product Rule...

$$
\begin{aligned}
& \text { in Newton notation } \\
& {[f(x) g(x)]^{\prime}} \\
& f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& \left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{aligned}
$$

...in Leibniz notation

$$
\begin{gathered}
\frac{d}{d x}[f g] \\
f \frac{d g}{d x}+g \frac{d f}{d x} \\
\left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{gathered}
$$

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Using the Product Rule...

$$
\begin{aligned}
& \text { in Newton notation } \\
& {[f(x) g(x)]^{\prime}} \\
& f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& \left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{aligned}
$$

..in Leibniz notation

$$
\begin{gathered}
\frac{d}{d x}[f g] \\
f \frac{d g}{d x}+g \frac{d f}{d x} \\
\left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{gathered}
$$

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Using the Product Rule...

$$
\begin{aligned}
& \text { in Newton notation } \\
& {[f(x) g(x)]^{\prime}} \\
& f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& \left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{aligned}
$$

...in Leibniz notation

$$
\begin{gathered}
\frac{d}{d x}[f g] \\
f \frac{d g}{d x}+g \frac{d f}{d x} \\
\left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{gathered}
$$

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Using the Product Rule...

$$
\begin{aligned}
& \text { in Newton notation } \\
& {[f(x) g(x)]^{\prime}} \\
& f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& \left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{aligned}
$$

...in Leibniz notation

$$
\begin{gathered}
\frac{d}{d x}[f g] \\
f \frac{d g}{d x}+g \frac{d f}{d x} \\
\left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{gathered}
$$

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Using the Product Rule...

$$
\begin{aligned}
& \text { in Newton notation } \\
& {[f(x) g(x)]^{\prime}} \\
& f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& \left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d x}[f g] \\
f \frac{d g}{d x}+g \frac{d f}{d x} \\
\left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{gathered}
$$

Revisit earlier example

Earlier, had $f(x)=x^{3}, g(x)=x^{10}$, and $k(x)=f(x) g(x)=x^{13}$. The derivative of the product was $k^{\prime}(x)=13 x^{12}$.

Using the Product Rule...

$$
\begin{aligned}
& \text { in Newton notation } \\
& {[f(x) g(x)]^{\prime}} \\
& f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& \left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{aligned}
$$

...in Leibniz notation

$$
\begin{gathered}
\frac{d}{d x}[f g] \\
f \frac{d g}{d x}+g \frac{d f}{d x} \\
\left(x^{3}\right)\left(10 x^{9}\right)+\left(x^{10}\right)\left(3 x^{2}\right)
\end{gathered}
$$

in either notation,

$$
\begin{gathered}
10 x^{12}+3 x^{12} \\
=13 x^{12}
\end{gathered}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$.

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
k^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x)
\end{aligned}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x)
\end{aligned}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x)
\end{aligned}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x)
\end{aligned}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x)
\end{aligned}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x) \\
& =5 x^{4}+18 x^{2}+5
\end{aligned}
$$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x) \\
& =5 x^{4}+18 x^{2}+5
\end{aligned}
$$

Solution 2:

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x) \\
& =5 x^{4}+18 x^{2}+5
\end{aligned}
$$

Solution 2:

- FOIL out $k(x)$ to get $k(x)=x^{5}+6 x^{3}+5 x$

Example

Exercise: Let $k(x)=\left(x^{2}+1\right)\left(x^{3}+5 x\right)$. Differentiate $k(x)$. Solution:

- $k(x)=f(x) g(x)$, where $f(x)=x^{2}+1$ and $g(x)=x^{3}+5 x$.
- $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}+5$.

$$
\begin{aligned}
k^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =\left(x^{2}+1\right)\left(3 x^{2}+5\right)+\left(x^{3}+5 x\right)(2 x) \\
& =5 x^{4}+18 x^{2}+5
\end{aligned}
$$

Solution 2:

- FOIL out $k(x)$ to get $k(x)=x^{5}+6 x^{3}+5 x$
- Sum Rule and Power Rule: $k^{\prime}(x)=5 x^{4}+18 x^{2}+5$

Example [B]

Exercise: Find $\frac{d}{d x}\left[\frac{1}{x}\left(x^{2}+e^{x}\right)\right]$.

Example [B]

Exercise: Find $\frac{d}{d x}\left[\frac{1}{x}\left(x^{2}+e^{x}\right)\right]$.
Solution:

- $f(x)=\frac{1}{x}$ and $g(x)=x^{2}+e^{x}$

$$
\begin{aligned}
\left.\frac{d}{d x}[f(x) g(x))\right] & =f \frac{d g}{d x}+g \frac{d f}{d x} \\
& =\frac{1}{x} \frac{d}{d x}\left[x^{2}+e^{x}\right]+\left(x^{2}+e^{x}\right) \frac{d}{d x}\left[\frac{1}{x}\right] \\
& =\frac{1}{x} \frac{d}{d x}\left[x^{2}+e^{x}\right]+\left(x^{2}+e^{x}\right) \frac{d}{d x}\left[x^{-1}\right] \\
& =\frac{1}{x}\left(2 x+e^{x}\right)+\left(x^{2}+e^{x}\right)\left(-1 x^{-2}\right)
\end{aligned}
$$

Example [B]

Exercise: If $y=x^{3} e^{x}$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
In other words, find y^{\prime} and $y^{\prime \prime}$.

Example [B]

Exercise: If $y=x^{3} e^{x}$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
In other words, find y^{\prime} and $y^{\prime \prime}$.
Solution:

- $y^{\prime}=\left(x^{3}\right)\left(e^{x}\right)^{\prime}+\left(x^{3}\right)^{\prime}\left(e^{x}\right)=x^{3} e^{x}+3 x^{2} e^{x}$
- $y^{\prime \prime}=\left[x^{3} e^{x}+\left(3 x^{2}\right)\left(e^{x}\right)\right]^{\prime}=$ $\left(x^{3} e^{x}+3 x^{2} e^{x}\right)+\left(3 x^{2}\right)\left(e^{x}\right)^{\prime}+\left(3 x^{2}\right)^{\prime}\left(e^{x}\right)$
- $y^{\prime \prime}=x^{3} e^{x}+3 x^{2} e^{x}+3 x^{2} e^{x}+6 x e^{x}=x^{3} e^{x}+6 x^{2} e^{x}+6 x e^{x}$

Example [B]

Exercise: What is the derivative of $f(x)=\sqrt{x}(3 x+2)$?

Example [B]

Exercise: What is the derivative of $f(x)=\sqrt{x}(3 x+2)$?
Solution:

$$
\begin{aligned}
f^{\prime}(x)=(\sqrt{x})(3 x+2)^{\prime}+ & (\sqrt{x})^{\prime}(3 x+2)=\sqrt{x}(3)+\frac{1}{2 \sqrt{x}}(3 x+2) \\
= & 3 \sqrt{x}+\frac{3 x+2}{2 \sqrt{x}}
\end{aligned}
$$

Example [B]

Exercise: What is the derivative of $f(x)=(x+1)\left(x^{2}-7 x\right)\left(e^{x}\right)$?

Example [B]

Exercise: What is the derivative of $f(x)=(x+1)\left(x^{2}-7 x\right)\left(e^{x}\right)$?
Solution:

- Think of f as being: $\left[(x+1)\left(x^{2}-7 x\right)\right]\left[e^{x}\right]$

$$
\begin{aligned}
& f^{\prime}=\left[(x+1)\left(x^{2}-7 x\right)\right]^{\prime}\left[e^{x}\right]+\left[(x+1)\left(x^{2}-7 x\right)\right]\left[e^{x}\right]^{\prime} \\
& =\left[(x+1)\left(x^{2}-7 x\right)^{\prime}+(x+1)^{\prime}\left(x^{2}-7 x\right)\right]\left[e^{x}\right]+\left[(x+1)\left(x^{2}-7 x\right)\right]\left[e^{x}\right]^{\prime} \\
& =\left[(x+1)(2 x-7)+(1)\left(x^{2}-7 x\right)\right]\left[e^{x}\right]+\left[(x+1)\left(x^{2}-7 x\right)\right]\left[e^{x}\right]
\end{aligned}
$$

- First break the function of three factors into two factors: a "super factor" and a regular factor, then use the Product Rule twice
- Or, use the "Triple Product Rule", proved by doing Product Rule twice on a generic "super factor"

Example

Exercise: If $k(x)=f(x) \cdot g(x)$ and

- $f(2)=3$
- $f^{\prime}(2)=-4$
- $g(2)=1$
- $g^{\prime}(2)=5$
then find $k^{\prime}(2)$.

Example

Exercise: If $k(x)=f(x) \cdot g(x)$ and

- $f(2)=3$
- $f^{\prime}(2)=-4$
- $g(2)=1$
- $g^{\prime}(2)=5$
then find $k^{\prime}(2)$.

Solution:

Example

Exercise: If $k(x)=f(x) \cdot g(x)$ and

- $f(2)=3$
- $f^{\prime}(2)=-4$
- $g(2)=1$
- $g^{\prime}(2)=5$
then find $k^{\prime}(2)$.

Solution:

- Use $k^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$, plug in $x=2$

Example

Exercise: If $k(x)=f(x) \cdot g(x)$ and

- $f(2)=3$
- $f^{\prime}(2)=-4$
- $g(2)=1$
- $g^{\prime}(2)=5$
then find $k^{\prime}(2)$.

Solution:

- Use $k^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$, plug in $x=2$

$$
k^{\prime}(2)=f(2) g^{\prime}(2)+g(2) f^{\prime}(2)
$$

Example

Exercise: If $k(x)=f(x) \cdot g(x)$ and

- $f(2)=3$
- $f^{\prime}(2)=-4$
- $g(2)=1$
- $g^{\prime}(2)=5$
then find $k^{\prime}(2)$.

Solution:

- Use $k^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$, plug in $x=2$

$$
\begin{aligned}
k^{\prime}(2) & =f(2) g^{\prime}(2)+g(2) f^{\prime}(2) \\
& =(3)(5)+(1)(-4)
\end{aligned}
$$

Example

Exercise: If $k(x)=f(x) \cdot g(x)$ and

- $f(2)=3$
- $f^{\prime}(2)=-4$
- $g(2)=1$
- $g^{\prime}(2)=5$
then find $k^{\prime}(2)$.

Solution:

- Use $k^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$, plug in $x=2$

$$
\begin{aligned}
k^{\prime}(2) & =f(2) g^{\prime}(2)+g(2) f^{\prime}(2) \\
& =(3)(5)+(1)(-4) \\
& =11
\end{aligned}
$$

Example [B]

Exercise: Differentiate $f(x)=(10)\left(x^{6}\right)$

Example [B]

Exercise: Differentiate $f(x)=(10)\left(x^{6}\right)$
Solution: $\frac{d f}{d x}=\frac{d}{d x}[10] \cdot\left(x^{6}\right)+(10) \frac{d}{d x} \cdot\left[x^{6}\right]$
which simplifies $0 \cdot\left(x^{6}\right)+(10) 6 x^{5}=60 x^{5}$

Example [B]

Exercise: Differentiate $f(x)=(10)\left(x^{6}\right)$
Solution: $\frac{d f}{d x}=\frac{d}{d x}[10] \cdot\left(x^{6}\right)+(10) \frac{d}{d x} \cdot\left[x^{6}\right]$
which simplifies $0 \cdot\left(x^{6}\right)+(10) 6 x^{5}=60 x^{5}$
FASTER SOLUTION: $\frac{d}{d x}\left[10 x^{6}\right]=10 \frac{d}{d x}\left[x^{6}\right]=10 \cdot 6 x^{5}=60 x^{5}$

Example [B]

Exercise: Differentiate $f(x)=(10)\left(x^{6}\right)$
Solution: $\frac{d f}{d x}=\frac{d}{d x}[10] \cdot\left(x^{6}\right)+(10) \frac{d}{d x} \cdot\left[x^{6}\right]$
which simplifies $0 \cdot\left(x^{6}\right)+(10) 6 x^{5}=60 x^{5}$
FASTER SOLUTION: $\frac{d}{d x}\left[10 x^{6}\right]=10 \frac{d}{d x}\left[x^{6}\right]=10 \cdot 6 x^{5}=60 x^{5}$

Time-saving tip!

Just because you can use the Product Rule doesn't mean that you always should.

- If one of your factors is just a constant, then SAVE SOME TIME by using the Constant Multiple Rule instead!!!

