16.4: Green's Theorem in the Plane ${ }^{1}$ E. Kim

The setup is:

- $M(x, y)$ and $N(x, y)$ are scalar functions with continuous first partial derivatives
- C is a piecewise smooth, simple closed curve enclosing a region R in the $x y$-plane

Then,

$$
\begin{equation*}
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y \tag{2}
\end{equation*}
$$

If, in addition $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$, then:

- Comments on equation (1) are:
- The left part of equation (1) is called the circulation of \mathbf{F} around C and is also written

$$
\begin{equation*}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} \mathbf{F} \cdot \mathbf{T} d s \tag{3}
\end{equation*}
$$

- The expression in parentheses in equation (1) is called the circulation density of \mathbf{F}. It is also called the k-component of curl of \mathbf{F}. In symbols:

$$
(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} \text { is defined to be } \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}
$$

- For this reason, equation (1) is called the circulation-curl version of Green's Theorem ${ }^{2}$.
- Comments on equation (2) are:
- The left part of equation (2) is called the flux of \mathbf{F} across C and is also written

$$
\begin{equation*}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s . \tag{4}
\end{equation*}
$$

- The expression in parentheses in equation (2) is called the flux density of \mathbf{F}. It is also called the divergence of \mathbf{F}. In symbols:
$(\operatorname{div} \mathbf{F})$ is defined to be $\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}$
- For this reason, equation (2) is called the flux-divergence version of Green's Theorem ${ }^{3}$.

[^0]
[^0]: ${ }^{1}$ Notation follows Notation follows Thomas' Calculus: Early Transcendentals (12th Edition) as closely as possible
 ${ }^{2}$ Also called the Tangential Form of Green's Theorem because of the \mathbf{T} in formula (3).
 ${ }^{3}$ Also called the Normal Form of Green's Theorem because of the \mathbf{n} in formula (4).

