How to compute line integrals of vector fields

> E. Kim

Physics: Work

In physics, there's a formula that says

$$
\text { Work }=\text { Force } \times \text { Distance }
$$

If \mathbf{F} is a force field (whether gravitational or otherwise), then $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is the work done by the force in moving an object along the path C parametrized as $\mathbf{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}, \quad a \leq t \leq b$

How to compute line integrals of vector fields

Given a vector field $\mathbf{F}(x, y, z)=\underbrace{M(x, y, z)}_{\uparrow} \mathbf{i}+\underbrace{N(x, y, z)}_{\uparrow} \mathbf{j}+\underbrace{P(x, y, z)}_{\uparrow} \mathbf{k}$
Given a curve C parametrized as $\mathbf{r}(t)=\underbrace{g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}}, \quad a \leq t \leq b$

1. Write $\mathbf{F}(g(t), h(t), k(t))=M(g(t), h(t), k(t)) \mathbf{i}+N(g(t), h(t), k(t)) \mathbf{j}+P(g(t), h(t), k(t)) \mathbf{k}$

How? Rewrite the formulas for M, N, P shown here but replacing x, y, z with $g(t), h(t), k(t)$

Call this $\mathbf{F}(\mathbf{r}(t))$
2. Compute $\frac{d \mathbf{r}}{d t}(t)=g^{\prime}(t) \mathbf{i}+h^{\prime}(t) \mathbf{j}+k^{\prime}(t) \mathbf{k}$ from
3. Evaluate the 21B-style integral $\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} d t$

The integrand of this integral is the dot product of two vectors:

- $\mathbf{F}(\mathbf{r}(t))$ from Step 1
- $\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)$ from Step 2

Notation follows Thomas' Calculus: Early Transcendentals (12th Edition)
as closely as possible

