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What is Linear Programming / Linear Optimization

Maximize the value of a given linear function c : Rn → R subject
to a finite set of linear inequalities.

Example: Linear Program

Maximize c(x, y, z) = 2x + 3y + 4z
subject to 3x + 2y + z ≤ 10

2x + 5y + 3z ≤ 15
x, y, z ≥ 0.

It is not enough to state what is the maximal value of c(x, y, z).

α = β iff α ≤ β and β ≤ α

Constraints can also include linear equations
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The Hirsch Conjecture

∆(d, f ) = maximum diameter among d-polytope with f facets

Conjecture [Hirsch 1957]

∆(d, f ) ≤ f − d

Theorem: Matschke, Weibel, Santos [2011]

∆(d, f ) ≥ 21
20(f − d) for d ≥ 20
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The Hirsch Conjecture

∆(d, f ) = maximum diameter among d-polytope with f facets

Ex-Conjecture [Hirsch 1957]

∆(d, f ) ≤ f − d

Theorem: Matschke, Weibel, Santos [2011]

∆(d, f ) ≥ 21
20(f − d) for d ≥ 20
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Transportation Problem

supplies demands
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Linear Program: the transportation problem
Given:

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $9/unit to ship from Austin to Delhi

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $2/unit to ship from Austin to Edmonton

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Given:

it costs $7/unit to ship from Austin to Fukuoka
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Linear Program: the transportation problem
Given:

it costs $8/unit to ship from Austin to Giza

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $8/unit to ship from Boston to Delhi

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Given:

it costs $3/unit to ship from Boston to Edmonton
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Linear Program: the transportation problem
Given:

it costs $9/unit to ship from Boston to Fukuoka

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $3/unit to ship from Boston to Giza

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $7/unit to ship from Charleston to Delhi

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $4/unit to ship from Charleston to Edmonton

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

it costs $6/unit to ship from Charleston to Giza

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Linear Program: the transportation problem
Given:

supply/demand amounts and per-unit transportation costs,
How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Classical Transportation Polytopes
Let u ∈ Rm and v ∈ Rn with positive entries.

Definition
The m× n transportation polytope determined by margins u
and v is the set P of non-negative matrices X = (xi, j) satisfying

n∑
j=1

xi, j = ui ∀i and
m∑

i=1

xi, j = vj ∀j.

x1,1 x1,2 x1,3 x1,4 8
x2,1 x2,2 x2,3 x2,4 8
x3,1 x3,2 x3,3 x3,4 6
9 1 3 9
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Hirsch-implied Bound

The m× n transportation polytope P defined by

n∑
j=1

xi, j = ui ∀i and
m∑

i=1

xi, j = vj ∀j and xi,j ≥ 0 ∀i, j

has

dimension d = (m− 1)(n− 1) = mn− (m + n− 1)

number of facets: f ≤ mn

If the Hirsch Conjecture is true for transportation polytopes,
then diam(P) ≤ f − d ≤ m + n− 1.
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Classical Transportation Polytopes
Example: m = 3, n = 4

If u = (8, 8, 6) ∈ Rm and v = (9, 1, 3, 9) ∈ Rn,

then the polytope P
contains (among others), the following points:

1 0 3 4 8
8 0 0 0 8
0 1 0 5 6
9 1 3 9

1 1 3 3 8
8 0 0 0 8
0 0 0 6 6
9 1 3 9

Both the point on the left and on the right happen to be vertices
due to a Theorem of Klee and Witzgall.
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Vertices with slice condition
Same slice contains the same single support entry

X′ Y ′

Vertices X′ and Y ′ have

the same slice
which has a single support entry
which is the same support entry
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Quadratic Bound

Theorem: van den Heuvel, Stougie [2002]
Every m× n transportation polytope has diameter at
most (m + n)2.

Lemma
Given two arbitrary vertices X and Y of an m× n transportation
polytope P, there are vertices X′ and Y ′ of P such that:

The same slice in X′ and Y ′ contains the same single
support entry
distP(X,X′) + distP(Y,Y ′) ≤ 2(m + n− 2).
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Lemma: Proof Sketch
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Linear Bound

Theorem: Brightwell, van den Heuvel, Stougie [2006]
Every m× n transportation polytope has diameter at
most 8(m + n− 1).

Lemma
Given two arbitrary vertices X and Y of an m× n transportation
polytope P, there are vertices X′ and Y ′ of P such that:

The same slice in X′ and Y ′ contains the same single
support entry
distP(X,X′) + distP(Y,Y ′) ≤ 8.
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Theorem: Brightwell, van den Heuvel, Stougie [2006]
Every m× n transportation polytope has diameter at
most 8(m + n− 1).
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Better Linear Bound

Theorem: Hurkens [2009]
Every m× n transportation polytope has diameter at
most 4(m + n− 1).

Lemma
Given two arbitrary vertices X and Y of an m× n transportation
polytope P, there is an integer k > 0 such that

X′ and Y ′ are vertices of P

The same k slices in X′ and Y ′ each contain the same
single support entry
distP(X,X′) + distP(Y,Y ′) ≤ 4k.
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2× n Transportation Polytopes

Theorem: De Loera, K. [2014]
Every 2× n transportation polytope satisfies the Hirsch
Conjecture.

Lemma
Every vertex X of a non-degenerate 2× n transportation
polytope contains a unique column with two strictly positive
coordinates.
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3-way Transportation Polytopes

Definition
Given u ∈ Rm, v ∈ Rn and w ∈ Rp,

the
3-way transportation polytope given by
1-marginals is defined in mnp
non-negative variables xi,j,k ∈ R≥0 with
the m + n + p equations∑

j,k

xi,j,k = ui ∀i,

∑
i,k

xi,j,k = vj ∀j,∑
i,j

xi,j,k = wk ∀k.
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Significance of 3-way Transportation Polytopes

 

Theorem: De Loera, Onn [2006]
Given any rational polytope P,

There is a 3-way transportation polytope Q given by
1-marginals with a face that is isomorphic to P.
Moreover, the polytope Q can be computed in polynomial
time (in the description of P).
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Quadratic Bound for Axial Transportation Polytopes

Theorem: De Loera, K., Onn, Santos [2009]
Every 3-way axial m× n× p transportation polytope has
diameter at most 2(m + n + p)2.

Lemma
Given two arbitrary vertices X and Y of an m× n× p axial
transportation polytope P, there are vertices X′ and Y ′ of P such
that:

The same slice in X′ and Y ′ contains the same single
support entry
distP(X,X′) + distP(Y,Y ′) ≤ 4(m + n + p− 1).
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