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Ex-Conjecture [Hirsch 1957]
Ald,f)<f—d

Theorem: Matschke, Weibel, Santos [2011]
Ad,f) > 35(f —d) ford > 20
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Linear Program: the transportation problem
Given:
@ supply/demand amounts and per-unit transportation costs,

How much should be put on the plane from each supply to
each demand to minimize the total cost of transporting?
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Example: m=3,n=14

If u=(8,8,6) e R"andv = (9,1,3,9) € R", then the polytope P
contains (among others), the following points:
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Classical Transportation Polytopes

Example: m=3,n=14

If u=(8,8,6) e R"andv = (9,1,3,9) € R", then the polytope P
contains (among others), the following points:

11013148 1{1]3]3|8
810]0]08 8100108
0/1{0|5]6 0/]0[{0|6]6
9 1 3 9 9 1 3 9

Both the point on the left and on the right happen to be vertices
due to a Theorem of Klee and Witzgall.
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Same slice contains the same single support entry

X/

Vertices X’ and Y’ have
@ the same slice
@ which has a single support entry
@ which is the same support entry
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Quadratic Bound

Theorem: van den Heuvel, Stougie [2002]

Every m x n transportation polytope has diameter at
most (m + n)?.

Lemma

Given two arbitrary vertices X and Y of an m x n transportation
polytope P, there are vertices X’ and Y’ of P such that:

@ The same slice in X’ and Y’ contains the same single
support entry

@ distp(X,X’) +distp(Y,Y') <2(m+n —2).
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Theorem: Brightwell, van den Heuvel, Stougie [2006]

Every m x n transportation polytope has diameter at
most 8(m +n — 1).




Linear Bound

Theorem: Brightwell, van den Heuvel, Stougie [2006]

Every m x n transportation polytope has diameter at
most 8(m +n — 1).

Lemma

Given two arbitrary vertices X and Y of an m x n transportation
polytope P, there are vertices X’ and Y’ of P such that:

@ The same slice in X’ and Y’ contains the same single
support entry

(] diStp(X, X/) + diStp(Y, Y/) < 8.
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Better Linear Bound

Theorem: Hurkens [2009]

Every m x n transportation polytope has diameter at
most 4(m +n —1).

Lemma

Given two arbitrary vertices X and Y of an m x n transportation
polytope P, there is an integer £ > 0 such that

@ X’ and Y’ are vertices of P

@ The same & slices in X’ and Y’ each contain the same
single support entry

@ distp(X,X’) + distp(Y,Y’) < 4k.
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Theorem: De Loera, K. [2014]
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Conjecture.




2 x n Transportation Polytopes

Theorem: De Loera, K. [2014]

Every 2 x n transportation polytope satisfies the Hirsch
Conjecture.

Lemma

Every vertex X of a non-degenerate 2 x n transportation
polytope contains a unique column with two strictly positive

coordinates.
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3-way Transportation Polytopes
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Givenu e R™, v e R"and w € R?, the
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Definition

Givenu € R", v € R" and w € R, the
3-way transportation polytope given by
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Definition

Givenu e R™, v e R"and w € R?, the
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3-way Transportation Polytopes

Definition

Givenu e R™, v e R"and w € R?, the
3-way transportation polytope given by
1-marginals is defined in mnp
non-negative variables x;;, € R>o with
the m + n + p equations
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E Xijk =vj Y,
i,k
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3-way Transportation Polytopes

Definition
Givenu € R", v € R" and w € R, the
3-way transportation polytope given by

GA
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E Xijk = Vj Vi,
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3-way Transportation Polytopes

Definition

Givenu e R™, v e R"and w € R?, the
3-way transportation polytope given by
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3-way Transportation Polytopes

Definition

Givenu € R", v € R" and w € R, the
3-way transportation polytope given by
1-marginals is defined in mnp
non-negative variables x;;, € R>o with
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Significance of 3-way Transportation Polytopes

N

Theorem: De Loera, Onn [2006]
Given any rational polytope P,

@ There is a 3-way transportation polytope Q given by
1-marginals with a face that is isomorphic to P.

@ Moreover, the polytope Q can be computed in polynomial
time (in the description of P).
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Quadratic Bound for Axial Transportation Polytopes

Theorem: De Loera, K., Onn, Santos [2009]

Every 3-way axial m x n x p transportation polytope has
diameter at most 2(m + n + p)>.




Quadratic Bound for Axial Transportation Polytopes

Theorem: De Loera, K., Onn, Santos [2009]

Every 3-way axial m x n x p transportation polytope has
diameter at most 2(m + n + p)>.

Lemma
Given two arbitrary vertices X and Y of an m x n x p axial
transportation polytope P, there are vertices X’ and Y’ of P such
that:
@ The same slice in X’ and Y’ contains the same single
support entry

o distp(X,X') + distp(Y,Y’) <4(m+n+p—1).
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