The transportation problem and the diameters of transportation polytopes

Edward D. Kim
University of Wisconsin-La Crosse

March 6, 2015

UW-L Mathematics Colloquium

Slides at http://websites.uwlax.edu/ekim/talks/

What is Linear Programming / Linear Optimization

Maximize the value of a given linear function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to a finite set of linear inequalities.

What is Linear Programming / Linear Optimization

Maximize the value of a given linear function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to a finite set of linear inequalities.

Example: Linear Program

Maximize $\quad c(x, y, z)=2 x+3 y+4 z$
subject to $3 x+2 y+z \leq 10$
$2 x+5 y+3 z \leq 15$
$x, y, z \geq 0$.

What is Linear Programming / Linear Optimization

Maximize the value of a given linear function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to a finite set of linear inequalities.

Example: Linear Program

$$
\begin{array}{ll}
\text { Maximize } & c(x, y, z)=2 x+3 y+4 z \\
\text { subject to } & 3 x+2 y+z \leq 10 \\
& 2 x+5 y+3 z \leq 15 \\
& x, y, z \geq 0
\end{array}
$$

It is not enough to state what is the maximal value of $c(x, y, z)$.

What is Linear Programming / Linear Optimization

Maximize the value of a given linear function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to a finite set of linear inequalities.

Example: Linear Program

$$
\begin{array}{ll}
\text { Maximize } & c(x, y, z)=2 x+3 y+4 z \\
\text { subject to } & 3 x+2 y+z \leq 10 \\
& 2 x+5 y+3 z \leq 15 \\
& x, y, z \geq 0
\end{array}
$$

It is not enough to state what is the maximal value of $c(x, y, z)$.

$$
\alpha=\beta \text { iff } \alpha \leq \beta \text { and } \beta \leq \alpha
$$

Constraints can also include linear equations

What is Linear Programming / Linear Optimization

Maximize the value of a given linear function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to a finite set of linear inequalities.

Example: Linear Program

$$
\begin{array}{ll}
\text { Maximize } & c(x, y, z)=2 x+3 y+4 z \\
\text { subject to } & 3 x+2 y+z \leq 10 \\
& 2 x+5 y+3 z=15 \\
& x, y, z \geq 0
\end{array}
$$

It is not enough to state what is the maximal value of $c(x, y, z)$.

$$
\alpha=\beta \text { iff } \alpha \leq \beta \text { and } \beta \leq \alpha
$$

Constraints can also include linear equations

The Hirsch Conjecture

$\Delta(d, f)=$ maximum diameter among d-polytope with f facets

The Hirsch Conjecture

$\Delta(d, f)=$ maximum diameter among d-polytope with f facets

Conjecture [Hirsch 1957]

$$
\Delta(d, f) \leq f-d
$$

The Hirsch Conjecture

$\Delta(d, f)=$ maximum diameter among d-polytope with f facets

Ex-Conjecture [Hirsch 1957]

$$
\Delta(d, f) \leq f-d
$$

Theorem: Matschke, Weibel, Santos [2011]

$$
\Delta(d, f) \geq \frac{21}{20}(f-d) \text { for } d \geq 20
$$

Transportation Problem

supplies

demands

Transportation Problem

supplies

demands
Austin
\bullet

- Delhi
- Edmonton

Boston

Charleston
\bullet
Giza

Transportation Problem

supplies

demands
Austin 8 •

- 9 Delhi
- 1 Edmonton

Boston 8

Charleston 6 •

- 9 Giza

Transportation Problem

supplies

demands
Austin 8 •

- 9 Delhi
- 1 Edmonton

Boston 8 •

Charleston 6 •

- 3 Fukuoka
- 9 Giza

Linear Program: the transportation problem
Given:

Transportation Problem

supplies

demands
Austin 8 •

- 9 Delhi
- 1 Edmonton

Boston 8 •

Charleston 6 •

- 3 Fukuoka
- 9 Giza

Linear Program: the transportation problem

Given:

- the supply quantities

Transportation Problem

supplies

demands
Austin 8 •

- 9 Delhi
- 1 Edmonton

Boston 8 •

Charleston 6 •

- 3 Fukuoka
- 9 Giza

Linear Program: the transportation problem

Given:

- the demand quantities

Transportation Problem

supplies demands

Austin $8 \bullet \longrightarrow$ • 9 Delhi

- 1 Edmonton

Boston 8 •

- 3 Fukuoka

Charleston 6 •

- 9 Giza

Linear Program: the transportation problem

Given:

- it costs \$9/unit to ship from Austin to Delhi

Transportation Problem

Austin $8 \bullet \rightarrow$ • 9 Delhi

Boston 8 •

Charleston 6 •

- 9 Giza

Linear Program: the transportation problem

Given:

- it costs $\$ 2 /$ unit to ship from Austin to Edmonton

Transportation Problem

Charleston 6 •

- 9 Giza

Linear Program: the transportation problem

Given:

- it costs $\$ 7 /$ unit to ship from Austin to Fukuoka

Transportation Problem

supplies demands

Linear Program: the transportation problem

Given:

- it costs $\$ 8 /$ unit to ship from Austin to Giza

Transportation Problem

- 3 Fukuoka

Charleston 6 •

- 9 Giza

Linear Program: the transportation problem

Given:

- it costs \$8/unit to ship from Boston to Delhi

Transportation Problem

supplies demands

$$
\text { Austin } 8 \bullet \quad \bullet 9 \text { Delhi }
$$

- 3 Fukuoka

Charleston 6 • • 9 Giza

Linear Program: the transportation problem

Given:

- it costs \$3/unit to ship from Boston to Edmonton

Transportation Problem

> supplies demands

$$
\text { Austin } 8 \bullet \quad \bullet 9 \text { Delhi }
$$

- 1 Edmonton

Boston $8 \bullet \longrightarrow$ • 3 Fukuoka

Charleston 6 •

- 9 Giza

Linear Program: the transportation problem

Given:

- it costs \$9/unit to ship from Boston to Fukuoka

Transportation Problem

supplies demands

$$
\text { Austin } 8 \bullet \quad \bullet 9 \text { Delhi }
$$

- 1 Edmonton

Linear Program: the transportation problem

Given:

- it costs \$3/unit to ship from Boston to Giza

Transportation Problem

supplies demands

Linear Program: the transportation problem

Given:

- it costs $\$ 7 /$ unit to ship from Charleston to Delhi

Transportation Problem

supplies demands

$$
\text { Austin } 8 \bullet \quad \bullet 9 \text { Delhi }
$$

Linear Program: the transportation problem

Given:

- it costs \$4/unit to ship from Charleston to Edmonton

Transportation Problem

supplies
 demands

$$
\text { Austin } 8 \bullet \quad \bullet 9 \text { Delhi }
$$

- 1 Edmonton

Boston 8 •

Charleston 6

- 9 Giza

Linear Program: the transportation problem

Given:

- it costs \$9/unit to ship from Charleston to Fukuoka

Transportation Problem

supplies demands

Austin 8 •

- 9 Delhi
- 1 Edmonton

Boston 8 •

- 3 Fukuoka

Charleston $6 \bullet \longrightarrow$ - Giza

Linear Program: the transportation problem

Given:

- it costs \$6/unit to ship from Charleston to Giza

Transportation Problem

supplies
demands

Linear Program: the transportation problem

Given:

- supply/demand amounts and per-unit transportation costs, How much should be put on the plane from each supply to each demand to minimize the total cost of transporting?

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	8
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	8
$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	6
9	1	3	9	

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	8		
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	8		
$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	6		
	6	1	3	9		

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	8		
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	8		
$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	6		
	6	1	3	9		

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	8		
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	8		
$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	6		
	6	1	3	9		

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

Classical Transportation Polytopes

Let $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ with positive entries.

Definition

The $m \times n$ transportation polytope determined by margins u and v is the set P of non-negative matrices $X=\left(x_{i, j}\right)$ satisfying

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \quad \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \quad \forall j
$$

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	
$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	
9	1	3	9	

Hirsch-implied Bound

The $m \times n$ transportation polytope P defined by

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \forall j \quad \text { and } \quad x_{i, j} \geq 0 \forall i, j
$$

has

Hirsch-implied Bound

The $m \times n$ transportation polytope P defined by

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \forall j \quad \text { and } \quad x_{i, j} \geq 0 \forall i, j
$$

has

- dimension $d=(m-1)(n-1)=m n-(m+n-1)$

Hirsch-implied Bound

The $m \times n$ transportation polytope P defined by

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \forall j \quad \text { and } \quad x_{i, j} \geq 0 \forall i, j
$$

has

- dimension $d=(m-1)(n-1)=m n-(m+n-1)$
- number of facets: $f \leq m n$

Hirsch-implied Bound

The $m \times n$ transportation polytope P defined by

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \forall j \quad \text { and } \quad x_{i, j} \geq 0 \forall i, j
$$

has

- dimension $d=(m-1)(n-1)=m n-(m+n-1)$
- number of facets: $f \leq m n$

If the Hirsch Conjecture is true for transportation polytopes, then $\operatorname{diam}(P) \leq f-d$

Hirsch-implied Bound

The $m \times n$ transportation polytope P defined by

$$
\sum_{j=1}^{n} x_{i, j}=u_{i} \forall i \quad \text { and } \quad \sum_{i=1}^{m} x_{i, j}=v_{j} \forall j \quad \text { and } \quad x_{i, j} \geq 0 \forall i, j
$$

has

- dimension $d=(m-1)(n-1)=m n-(m+n-1)$
- number of facets: $f \leq m n$

If the Hirsch Conjecture is true for transportation polytopes, then $\operatorname{diam}(P) \leq f-d \leq m+n-1$.

Classical Transportation Polytopes

Example: $m=3, n=4$

$$
\text { If } u=(8,8,6) \in \mathbb{R}^{m} \text { and } v=(9,1,3,9) \in \mathbb{R}^{n}
$$

Classical Transportation Polytopes

Example: $m=3, n=4$

If $u=(8,8,6) \in \mathbb{R}^{m}$ and $v=(9,1,3,9) \in \mathbb{R}^{n}$, then the polytope P contains (among others), the following points:

1	0	3	4	8
8	0	0	0	8
0	1	0	5	6
9	1	3	9	

Classical Transportation Polytopes

Example: $m=3, n=4$

If $u=(8,8,6) \in \mathbb{R}^{m}$ and $v=(9,1,3,9) \in \mathbb{R}^{n}$, then the polytope P contains (among others), the following points:

1	0	3	4
8			
8	0	0	0
8			
0	1	0	5
	6		
9	1	3	9

Classical Transportation Polytopes

Example: $m=3, n=4$

If $u=(8,8,6) \in \mathbb{R}^{m}$ and $v=(9,1,3,9) \in \mathbb{R}^{n}$, then the polytope P contains (among others), the following points:

1	0	3	4
8			
8	0	0	0
8			
0	1	0	5
	6		
9	1	3	9

Classical Transportation Polytopes

Example: $m=3, n=4$

If $u=(8,8,6) \in \mathbb{R}^{m}$ and $v=(9,1,3,9) \in \mathbb{R}^{n}$, then the polytope P contains (among others), the following points:

1	0	3	4
8			
8	0	0	0
8			
0	1	0	5
	6		
9	1	3	9

1	1	3	3
8			
8	0	0	0
0	0	0	6
0	6		
9	1	3	9

Classical Transportation Polytopes

Example: $m=3, n=4$

If $u=(8,8,6) \in \mathbb{R}^{m}$ and $v=(9,1,3,9) \in \mathbb{R}^{n}$, then the polytope P contains (among others), the following points:

1	0	3	4
8			
8	0	0	0
8			
0	1	0	5
6			
9	1	3	9

1	1	3	3
8			
8	0	0	0
8			
0	0	0	6
	6		
9	1	3	9

Classical Transportation Polytopes

Example: $m=3, n=4$

If $u=(8,8,6) \in \mathbb{R}^{m}$ and $v=(9,1,3,9) \in \mathbb{R}^{n}$, then the polytope P contains (among others), the following points:

1	0	3	4
8			
8	0	0	0
8			
0	1	0	5
8	6		
9	1	3	9

1	1	3	3
8			
8	0	0	0
8			
0	0	0	6
6	6		
9	1	3	9

Both the point on the left and on the right happen to be vertices due to a Theorem of Klee and Witzgall.

Vertices with slice condition
Same slice contains the same single support entry

Vertices X^{\prime} and Y^{\prime} have

Vertices with slice condition
Same slice contains the same single support entry

Vertices X^{\prime} and Y^{\prime} have

- the same slice

Vertices with slice condition

Same slice contains the same single support entry

Vertices X^{\prime} and Y^{\prime} have

- the same slice
- which has a single support entry

Vertices with slice condition

Same slice contains the same single support entry

Vertices X^{\prime} and Y^{\prime} have

- the same slice
- which has a single support entry
- which is the same support entry

Quadratic Bound

Theorem: van den Heuvel, Stougie [2002]
Every $m \times n$ transportation polytope has diameter at most $(m+n)^{2}$.

Quadratic Bound

Theorem: van den Heuvel, Stougie [2002]
Every $m \times n$ transportation polytope has diameter at most $(m+n)^{2}$.

Lemma

Given two arbitrary vertices X and Y of an $m \times n$ transportation polytope P, there are vertices X^{\prime} and Y^{\prime} of P such that:

- The same slice in X^{\prime} and Y^{\prime} contains the same single support entry
- $\operatorname{dist}_{P}\left(X, X^{\prime}\right)+\operatorname{dist}_{P}\left(Y, Y^{\prime}\right) \leq 2(m+n-2)$.

Lemma: Proof Sketch

Linear Bound

Theorem: Brightwell, van den Heuvel, Stougie [2006]
Every $m \times n$ transportation polytope has diameter at most $8(m+n-1)$.

Linear Bound

Theorem: Brightwell, van den Heuvel, Stougie [2006]
Every $m \times n$ transportation polytope has diameter at most $8(m+n-1)$.

Lemma

Given two arbitrary vertices X and Y of an $m \times n$ transportation polytope P, there are vertices X^{\prime} and Y^{\prime} of P such that:

- The same slice in X^{\prime} and Y^{\prime} contains the same single support entry
- $\operatorname{dist}_{P}\left(X, X^{\prime}\right)+\operatorname{dist}_{P}\left(Y, Y^{\prime}\right) \leq 8$.

Lemma: Proof Sketch

Lemma: Proof Sketch

Better Linear Bound

Theorem: Hurkens [2009]
Every $m \times n$ transportation polytope has diameter at most $4(m+n-1)$.

Better Linear Bound

Theorem: Hurkens [2009]

Every $m \times n$ transportation polytope has diameter at most $4(m+n-1)$.

Lemma

Given two arbitrary vertices X and Y of an $m \times n$ transportation polytope P, there is an integer $k>0$ such that

- X^{\prime} and Y^{\prime} are vertices of P
- The same k slices in X^{\prime} and Y^{\prime} each contain the same single support entry
- $\operatorname{dist}_{P}\left(X, X^{\prime}\right)+\operatorname{dist}_{P}\left(Y, Y^{\prime}\right) \leq 4 k$.

$2 \times n$ Transportation Polytopes

Theorem: De Loera, K. [2014]
Every $2 \times n$ transportation polytope satisfies the Hirsch Conjecture.

$2 \times n$ Transportation Polytopes

Theorem: De Loera, K. [2014]

Every $2 \times n$ transportation polytope satisfies the Hirsch Conjecture.

Lemma

Every vertex X of a non-degenerate $2 \times n$ transportation polytope contains a unique column with two strictly positive coordinates.

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$,

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3 -way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\sum_{j, k} x_{i, j, k}=u_{i} \forall i
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\sum_{j, k} x_{i, j, k}=u_{i} \forall i
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3 -way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\sum_{j, k} x_{i, j, k}=u_{i} \forall i
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3 -way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\sum_{j, k} x_{i, j, k}=u_{i} \forall i
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in $m n p$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \forall j
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in $m n p$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \forall j
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in $m n p$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \forall j
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3 -way transportation polytope given by 1-marginals is defined in $m n p$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \forall j
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \quad \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \forall j \\
& \sum_{i, j} x_{i, j, k}=w_{k} \quad \forall k
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \quad \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \quad \forall j \\
& \sum_{i, j} x_{i, j, k}=w_{k} \quad \forall k
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3 -way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \quad \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \quad \forall j \\
& \sum_{i, j} x_{i, j, k}=w_{k} \quad \forall k
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3 -way transportation polytope given by 1-marginals is defined in $m n p$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \quad \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \quad \forall j \\
& \sum_{i, j} x_{i, j, k}=w_{k} \quad \forall k
\end{aligned}
$$

3-way Transportation Polytopes

Definition

Given $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{p}$, the 3-way transportation polytope given by 1-marginals is defined in mnp non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $m+n+p$ equations

$$
\begin{aligned}
& \sum_{j, k} x_{i, j, k}=u_{i} \quad \forall i \\
& \sum_{i, k} x_{i, j, k}=v_{j} \forall j \\
& \sum_{i, j} x_{i, j, k}=w_{k} \quad \forall k
\end{aligned}
$$

Significance of 3-way Transportation Polytopes

Theorem: De Loera, Onn [2006]
Given any rational polytope P,

Significance of 3-way Transportation Polytopes

Theorem: De Loera, Onn [2006]
Given any rational polytope P,

- There is a 3-way transportation polytope Q given by 1-marginals with a face that is isomorphic to P.

Significance of 3-way Transportation Polytopes

Theorem: De Loera, Onn [2006]
Given any rational polytope P,

- There is a 3-way transportation polytope Q given by 1-marginals with a face that is isomorphic to P.
- Moreover, the polytope Q can be computed in polynomial time (in the description of P).

"Same slice" with "same single support entry"

"Same slice" with "same single support entry"

"Same slice" with "same single support entry"

"Same slice" with "same single support entry"

Quadratic Bound for Axial Transportation Polytopes

Theorem: De Loera, K., Onn, Santos [2009]
Every 3-way axial $m \times n \times p$ transportation polytope has diameter at most $2(m+n+p)^{2}$.

Quadratic Bound for Axial Transportation Polytopes

Theorem: De Loera, K., Onn, Santos [2009]

Every 3-way axial $m \times n \times p$ transportation polytope has diameter at most $2(m+n+p)^{2}$.

Lemma

Given two arbitrary vertices X and Y of an $m \times n \times p$ axial transportation polytope P, there are vertices X^{\prime} and Y^{\prime} of P such that:

- The same slice in X^{\prime} and Y^{\prime} contains the same single support entry
- $\operatorname{dist}_{p}\left(X, X^{\prime}\right)+\operatorname{dist}_{p}\left(Y, Y^{\prime}\right) \leq 4(m+n+p-1)$.

Lemma: Proof Sketch

Case 1

Lemma: Proof Sketch
Case 2

Lemma: Proof Sketch
Case 2

Lemma: Proof Sketch

Case 2

Lemma: Proof Sketch

Case 2

Thank you!

N. Bonifas, M. Di Summa, F. Eisenbrand, N. Hähnle, M. Niemeier. On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom., 2014.
E. Brightwell, J. van den Heuvel, L. Stougie. A linear bound on the diameter of the transportation polytope. Combinatorica, 26(2):133-139, 2006.
J. A. De Loera, E. D. Kim. Combinatorics and Geometry of Transportation Polytopes: An Update. arXiv:1307.0124, 2014
(R J. A. De Loera, E. D. Kim, S. Onn, F. Santos. Graphs of transportation polytopes. J. Combin. Theory Ser. A, 116(8):1306-1325, 2009.
雨 J. A. De Loera, S. Onn. All linear and integer programs are slim 3-way transportation programs. SIAM J. Optim., 17:806-821, 2006.
(J. van den Heuvel, L. Stougie. A quadratic bound on the diameter of the transportation polytope. SPOR-report 2002-17, TU Eindhoven, and CDAM Research Report 2002-09, LSE, 2002.
V. Klee, C. Witzgall. Facets and Vertices of the Transportation Polytopes, Lecture Notes in Applied Mathematics, 11:257-282, AMS, 1968.

