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Abstract: The utility of an electron-deficient, air stable, and commercially available Lewis acid
tris(pentafluorophenyl)borane has recently been comprehensively explored. While being as reactive
as its distant cousin boron trichloride, it has been shown to be much more stable and capable
of catalyzing a variety of powerful transformations, even in the presence of water. The focus of
this review will be to highlight those catalytic reactions that utilize a silane as a stoichiometric
reductant in conjunction with tris(pentafluorophenyl) borane in the reduction of alcohols, carbonyls,
or carbonyl-like derivatives.

Keywords: tris(pentafluorophenyl)borane; silane; carbonyl reduction; Lewis acid; Si-H activation;
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1. Introduction

The utility of boron chemistry has exploded during the past 20 years, primarily due to
the discovery and exploitation of tris(pentafluorophenyl)borane, B(C6F5)3. Commonly known as
BCF, tris(pentafluorophenyl)borane [1–7] was found to have widespread use due to its unique
reactivity, selectivity, and relative stability in a variety of reaction conditions. BCF has been used in:
boration [8], hydrogenation [9,10], polymerization [11,12], hydrosilylation [13], alcohol or carbonyl
deoxygenation [14], and Lewis acid catalysis [15], to name a few. BCF has also been shown to promote
the selective chlorination of silanes using HCl to give both monochloro- and dichlorosilanes [16]. Before
the discovery of BCF, deoxygenation reactions utilized other less reliable boron Lewis acids such as BF3

in conjunction with silanes [17–22]. BCF was also at the heart of the “frustrated Lewis pair” (FLP) [23]
chemistry movement which bridged the gap between organic and inorganic chemistry in its utility.
The strong Lewis acidic nature of BCF is based on the highly electron-withdrawing pentafluorophenyl
groups attached to an already electron-deficient boron atom. BCF was first synthesized in 1963 [24,25],
although it did not find widespread use until recently. A direct experimental comparison of BCF to
other common B-based Lewis acids, BCl3 and BF3, concluded that BCF was comparable to BF3 in terms
of its relative Lewis acidity [26]. Although similar in Lewis acid strength, BCF was found to be far
more versatile in terms of its relative stability and functional group tolerance.

The term “frustrated Lewis pair” (FLP) has become associated with any molecule having
high Lewis acidity combined with large steric bulk that renders it incapable of forming standard
acid-base adducts [27]. This was a phenomenon first observed by H. C. Brown when he showed that
lutidine formed an adduct with BF3 but not with the less Lewis acidic and bulkier B(Me)3 [28]. This
unique combination enables FLPs to engage with reagents such as dihydrogen [4,5], alkenes [29,30],
alkynes [31], carbon dioxide [32], and carbon monoxide [33–35]. This chemistry has found widespread
utility throughout synthetic organic, organometallic and inorganic chemistry.
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One of the many versatile uses of BCF has been in the total synthesis of natural products in which
standard Lewis acids failed to produce the desired reaction outcomes. One example of this was in
Njardarson’s formal synthesis of platensimycin [36]. The unique reactivity of BCF was used to promote
a challenging deprotection of an elaborate aryl methyl ether. The free phenol was required to undergo
a phenoxy-promoted alkylative dearomatization reaction to give the desired polycyclic framework of
the natural product. A second example was an equally elaborate aryl methyl ether deprotection in a
synthetic approach toward a family of [3.3.1]-bicyclic phloroglucinol-derived natural products, which
failed under traditional Lewis acid conditions [37]. When BCF was employed with triethyl silane,
the methyl aryl ether was selectively deprotected to give a free phenol. This phenol was needed for an
oxidative dearomatization to give a cyclohexadieneone intermediate primed for a tandem bis-radical
cyclization to give the [3.3.1]-bicyclic framework of the natural product family. BCF was also applied
to the modification of complex bioactive compounds such as natural products and drugs to probe
structure-activity relationships [38].

Another use of BCF has been to react various O-heterocycles in the presence of silanes to
generate ring-opened allylic and homoallylic alcohols [39]. It was found that the allylic position
of the O-heterocyclic compound was reduced preferentially without any measurable extent of olefin
stereochemistry being lost. Substrates that were deemed electronically symmetric were found to rely
on the steric hindrance of the groups that were found to dictate the regiochemistry of the reduction.
An additional metal-free method for the BCF-promoted reactivity of heterocycles was reported by Shi
and coworkers [40]. They found that BCF was catalytically competent to promote the reduction of
various N-heterocycles.

A unique application for BCF has been the deoxygenation and reductive carbocyclization of
saturated and unsaturated carbohydrates. Using a vast excess of silane, Gagne and coworkers
were able to completely deoxygenate sugars to their corresponding hydrocarbon frameworks [41].
In a more controlled method the reaction could be tuned to produce both siloxy-cyclopropane and
siloxy-cyclopentane derivatives [42]. The method also applied to a variety of biologically sourced
polyols that could be converted into various chiral synthons [43].

2. Triethylsilane

2.1. Aryl and Alkyl Ethers

The first reported catalytic use of a Lewis acid for the reduction of alcohols and ethers with a
silane occurred in 2000 by the groups of Gevorgyan and Yamamoto [44]. In the study, they reported
the extent of reduction to be dependent upon the equivalents of triethylsilane used (Figure 1).
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Figure 1. Representative reductions with triethylsilane: (a) alcohols; (b) ethers.

Primary alcohols produced TES ethers with 1.1 equivalents of silane and alkanes when an
excess was used. A diaryl secondary alcohol was reduced directly to the alkane, while an aryl methyl
secondary alcohol stopped at the silyl ether, regardless of the silane equivalents in each case. Symmetric
ethers were cleaved to the alkane and silyl ether with 1.1 equivalents of silane and were fully reduced



Molecules 2019, 24, 432 3 of 30

to alkanes with 3.0 equivalents. More sterically hindered ethers such as diisopropyl ether afforded
exclusively the silyl ether, even with 3.0 equivalents of silane.

The research group of Dobrovetsky was recently able to extend the reduction of ethers to include
enol ethers [45]. Both alkyl enol ethers and silyl enol ethers were substrates for the reaction (Figure 2).
The reaction produces the free olefin and either an alkyl silyl ether or bis-silyl ether.
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Figure 2. Representative reductions of enol ethers with triethylsilane.

2.2. Aldehyde, Acid Chloride, Ester, and Carboxylic Functions

The Gevorgyan and Yamamoto groups extended their study with triethylsilane to include
aldehydes, acid chlorides, esters and carboxylic acids the following year [46]. In all cases, it was
shown that the aliphatic substrates were exhaustively reduced to hydrocarbons while the 1-naphthyl
variants produced exclusively the silyl ether (Figure 3). A variety of different aliphatic carboxylic
acids with phenyl groups appended were screened, and each produced the corresponding n-alkyl
benzene with the exception of 4-phenylbutyric acid. In this case, an intramolecular Friedel-Crafts
alkylation was observed, resulting in tetralin as the major product and the expected butyl benzene as
the minor product.
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Figure 3. Representative reductions with triethylsilane: (a) aldehydes; (b) acid chlorides; (c) esters;
(d) carboxylic acids; (e) 4-phenylbutyric acid reduction.

The substrate scope of aryl aldehydes was greatly expanded to include a variety of electron-rich
and electron-deficient benzaldehyde derivatives (Figure 4) [47]. In addition, Laali and coworkers
were able to demonstrate that a number of substituted acetophenone derivatives were substrates for
hydrosilylation as well. All reactions were conducted with one molar equivalent of triethylsilane and
therefore resulted in the isolation of the silyl ether product. The study went on to explore and compare
the analogous reactions with various metal triflates as catalysts. The metal triflates caused a dramatic
change in the chemoselectivity of the reaction. In these cases, they noted a substantial formation of the
dibenzylether and benzylation of the solvent as a result of over-reaction.
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Figure 4. Hydrosilylation of aldehydes and ketones: (a) benzaldehyde derivatives; (b) acetophenone
derivatives.

2.3. Olefins

The next advancement in the field involved the borane-catalyzed, trans-selective hydrosilylation
of olefins [13]. The Gevorgyan group found that a variety of silane reagents were tolerated and
the regiochemistry of the reaction suggested a direct addition of a silylium species across the olefin
followed by subsequent trapping with a borohydride (Figure 5). The study involved olefins with
a variety of substitution patterns modeling different electronic and steric preferences. The styrene
derivatives proceeded in very high yields using triethylsilane while the aliphatic olefins required the
use of dimethylphenylsilane to achieve comparable outcomes. The reaction of 1-methylcyclohexene
afforded almost exclusively cis product via anti addition of the silyl and hydride components. The only
aliphatic olefin shown to react with triethylsilane was the TIPS ether of 3-buten-1-ol, which resulted in
an 87% yield of the expected hydrosilylated product.
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Figure 5. Hydrosilylation of olefins: (a) styrene derivatives with Et3SiH; (b) aliphatic systems with
PhMe2SiH. c Product ratio cis: trans = 96:4.

2.4. Carboxylic Acids

Recently Brookhart and coworkers greatly extended the substrate scope of the reaction to include
carboxylic acids [48]. They were able to demonstrate that both aliphatic and aromatic carboxylic acids
could be efficiently converted into their corresponding disilyl acetals (Figure 6). They also found
optimal results were found by using tertiary silanes and that mild acidic workup cleanly afforded
the aldehyde product. It was found that making the change to triphenylsilane was required to attain
reasonable yields in the case of aryl carboxylic acids. The exception for this was o-toluic acid, in which
triphenylsilane did not produce any measureable product while triethylsilane worked well.
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Figure 6. Conversion of carboxylic acids into aldehydes: (a) aliphatic carboxylic acids; (b) aromatic
carboxylic acids; * Triethylsilane used in place of triphenylsilane.

2.5. Sulfides and Dithianes

An extension of the utility of these reaction conditions was realized in 2015 by Akiyama and
coworkers when they demonstrated the hydrodesulfurization of sulfides and dithianes [49]. In a
reaction that could be considered analogous to a Raney-Ni reduction, they were able to accomplish
desulfurization of a variety of sulfides to yield the corresponding hydrocarbons. They were also
able to reduce a number of dithianes to produce either the sulfide or fully desulfurized hydrocarbon,
depending on substrate (Figure 7). By contrast, when the thioacetal was derived from naphthaldehyde
rather than acetonaphthone, the sulfide was isolated rather than hydrocarbon.
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2.6. Amides and Nitriles

The utility of the borane-silane reduction was also shown to be applicable to acetanilide amides
and benzylic nitriles by McGrath and coworkers [50]. Acetanilide amides were conveniently reduced to
their corresponding secondary aniline derivatives (Figure 8). Tertiary aniline derivatives were possible,
but required the use of the more reactive diethylsilane to afford reasonable yields. The selectivity
of the reduction was also examined, and it was determined that acetanilide amides were reduced
preferentially over acetophenone or ethyl benzoate derivatives. Benzylic nitriles were also reduced to
the bis-silyl-protected amines. The nitriles were found to be more reactive than methyl aryl ethers and
esters, but the acetanilide amide was reduced in preference to the nitrile. In a mechanistic approach,
acetoacetanilide derivatives were screened and shown to result in ketone reduction to the silyl ether
with no reduction of the amide even with a large excess of silane and catalyst.
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Figure 8. Selectivity experiments with various functional groups: (a) Reduction of acetanilide amides
in the presence of ethers, ketone, and esters; (b) reduction of benzyl nitriles in the presence of ethers,
esters; (c) acetoacetanilide reductions. * diethylsilane was used.

2.7. Sulfoxides and Sulfones to Sulfides

The reduction of both sulfoxides and sulfones to their corresponding sulfides in the absence of
solvent was discovered last year by Oestreich and coworkers [51]. The reactions are run neat at 100 ◦C
for 8 hours and require using excess triethylsilane to achieve high yields (Figure 9). The reactions were
shown to work in toluene, but in far inferior yields.
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Figure 9. Reduction of (a) sulfoxides and (b) sulfones to sulfides.

3. Triphenylsilane

3.1. Aromatic Aldehydes, Ketones, and Esters

The catalytic reduction of benzaldehyde and acetophenone derivatives with triphenylsilane was
also explored in 1996 by Piers [52]. In this study, one equivalent of silane was used with 2 mol %
catalyst to afford the silyl ether selectively, regardless of the para substituent (Figure 10). This was
one of the initial studies into the unique mechanism of the reaction, which will be discussed further
in this review. Both the aryl aldehydes and ketones were shown to be selectively reduced to the
silyl ether in high yield, with the highest yielding reactions being the p-nitro derivatives in both
cases. The authors went on to show that under similar conditions, ethyl benzoate was reduced to
benzaldehyde, presumably by subsequent hydrolysis of the initial mixed silyl-ethyl acetal produced.



Molecules 2019, 24, 432 7 of 30
Molecules 2019, 24, 432 7 of 30 

 

 
Figure 10. Reduction of: (a) benzaldehyde derivatives; (b) acetophenone derivatives. 

3.2. Silylation of Alcohols 

Primary and secondary alcohols were shown by Piers to be substrates for catalytic silylation 
using triphenylsilane to produce triphenylsilyl ethers [53]. The reaction was shown to be tolerant of 
alkenes, alkynes, halogens, nitriles, esters, and lactones (Figure 11). The study then investigated 1,2-
diols and 1,3-diols with diphenylsilane and demonstrated both were substrates for the reaction 
resulting in five- and six-membered ring silyl acetals respectively, in reasonable yields. They also 
demonstrated that a variety of substituted phenols were substrates for the reaction as well. 

 

Figure 11. Alcohol and diol reactivity: (a) Silylation of primary and secondary alcohols; (b) silylation 
of alcohols in the presence of reactive functional groups; (c) silylation of 1,2-, and 1,3-diols with 
diphenyl silane. 

4. Diphenyl Silane 

4.1. Phosphonic and Phosphinic Esters 

A completely unique mode of reaction was explored by Keglevich and coworkers when they 
showed the silane/borane system was capable of reducing phosphorus-containing compounds with 
varying oxidation states of phosphorus [54]. The reaction of phosphonic and phosphinic esters with 
a hydrosilane and tris(pentafluorophenyl)borane was shown to produce either the bis-silylated 
phosphonate or free phosphine, depending on silane used (Figure 12). The comparable reaction of 
phosphinates (Figure 12b) proceeded with only 1 equivalent of phenylsilane and resulted in the 
corresponding secondary phosphine in reasonable yield. It appeared that the vinyl phosphinate 
caused issues resulting in a drastically diminished yield of the desired product. 

(a) (b)

Ph3SiH
B(C6F5)3

R Yield (%)
H

Cl
NO2

CH3

O

H

OSiPh3

H

R R

Ph3SiH
B(C6F5)3

R Yield (%)
H

Cl
NO2

CH3

O OSiPh3

R R

81

81
96

82

76

80
91

84

(a) (c)

Ph3SiH
B(C6F5)3

R1 Yield (%)

C5H11

PhCH2

cyclohexyl

80
93

87

95

Ph

R2

H
H

H

(b)

R1

R2

OH
R1

R2

OSiPh3

(CH3)2CH

Ph

95

87

(CH3)2CH

CH3

Ph3SiH
B(C6F5)3

R1 Yield (%)

CH2=CH

BrCH2

95
95
93
55

R2

H
H
H

R1

R2

OH
R1

R2

OSiPh3

95

83

HCNCH2

CH2CO2Et CH3

OO

HO

OH
OH Ph2SiH2

B(C6F5)3
O

O
Si

Ph
Ph

OH
Ph2SiH2
B(C6F5)3

OH

O O
Si

Ph Ph

61%

56%

HC C

Figure 10. Reduction of: (a) benzaldehyde derivatives; (b) acetophenone derivatives.

3.2. Silylation of Alcohols

Primary and secondary alcohols were shown by Piers to be substrates for catalytic silylation using
triphenylsilane to produce triphenylsilyl ethers [53]. The reaction was shown to be tolerant of alkenes,
alkynes, halogens, nitriles, esters, and lactones (Figure 11). The study then investigated 1,2-diols and
1,3-diols with diphenylsilane and demonstrated both were substrates for the reaction resulting in five-
and six-membered ring silyl acetals respectively, in reasonable yields. They also demonstrated that a
variety of substituted phenols were substrates for the reaction as well.
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Figure 11. Alcohol and diol reactivity: (a) Silylation of primary and secondary alcohols; (b) silylation
of alcohols in the presence of reactive functional groups; (c) silylation of 1,2-, and 1,3-diols with
diphenyl silane.

4. Diphenyl Silane

4.1. Phosphonic and Phosphinic Esters

A completely unique mode of reaction was explored by Keglevich and coworkers when they
showed the silane/borane system was capable of reducing phosphorus-containing compounds with
varying oxidation states of phosphorus [54]. The reaction of phosphonic and phosphinic esters
with a hydrosilane and tris(pentafluorophenyl)borane was shown to produce either the bis-silylated
phosphonate or free phosphine, depending on silane used (Figure 12). The comparable reaction
of phosphinates (Figure 12b) proceeded with only 1 equivalent of phenylsilane and resulted in the
corresponding secondary phosphine in reasonable yield. It appeared that the vinyl phosphinate caused
issues resulting in a drastically diminished yield of the desired product.
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4.2. Indoles, Enamines, Cinnamic Acid, Isocyanates, and Enol Ethers

The substrate scope of reduction was greatly expanded using diphenyl silane by Zhang to include
indoles, enamines, cinnamic acid, isocyanates, and enol ethers [55]. The indoles and secondary
enamines were efficiently reduced to the corresponding indolines and tertiary amines in high yield
(Figure 13). Cinnamic acid was fully reduced to the hydrocarbon propyl benzene, while an isocyanate
was reduced to a methyl amine, and an enol ether of phenylacetone was deoxygenated to give
propyl benzene.
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Figure 13. Reduction of indoles, enamines, cinnamic acids, isocyanates, and enol ethers.

4.3. Disproportionation Reaction of Indoles

Last year, Zhang and coworkers further explored the reactivity of indoles with
tris(pentafluorophenyl)borane and diphenylsilane [56]. A variety of substituted indoles were subjected
to the reaction conditions using diphenylsilane. Depending on whether 0.5 or 2.0 molar equivalents of
silane were used, the products were found to correspond to roughly equal amounts of the indolines
and silylated indoles or to solely silylated indoles, respectively (Figure 14). Regardless of substituent
or substitution pattern (not shown but included in original work), the yields were nearly quantitative
in both cases.
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Figure 14. Convergent disproportionation of indoles.

4.4. Regioselective Deoxygenation of 1,2-Diols

The Morandi group demonstrated that terminal 1,2-diols react regioselectively reducing the
primary alcohol to yield the secondary silyl ether [57]. A variety of terminal 1,2-diols were subjected
to BCF and diphenyl silane followed by addition of triethylsilane, and each resulted in reduction of
the primary alcohol and protection of the secondary alcohol (Figure 15). The same group went on to
explore internal 1,2-diols and found that under analogous reaction conditions, a reductive pinacol-type
rearrangement was observed [58]. They also noted that the reaction proceeds through a concerted,
stereoinvertive mechanism giving rise to highly enantiomerically enriched products.
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5. Phenylsilane

5.1. Cyclic Imides

The synthesis of N-substituted pyrrolidines was realized this year by Xie and coworkers directly
from the corresponding cyclic imide using phenylsilane as the stoichiometric reductant [59]. A variety
of N-substituted phthalimide derivatives were subjected to 2-3 equivalents of phenylsilane and catalytic
borane to produce the N-substituted pyrrolidines (Figure 16). When the equivalents of silane were
reduced, a small amount of the lactam remained without any measurable hemiaminal-type products
present. Therefore, it can be concluded that in the two-step reduction of each carbonyl group of the
cyclic imide, the first step is rate determining. To date, this represents one of the most mild and
selective methods of producing substituted pyrrolidines.
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Figure 16. Mild and selective formation of N-substituted pyrrolidines from cyclic imides.

5.2. Deoxygenation of Sulfoxides and Amine N-Oxides

Aryl methyl sulfoxides and heterocyclic aromatic N-oxides were shown to be substrates for
deoxygenation using the highly reactive phenylsilane and BCF [60]. The aryl component of the
sulfoxide tolerated a wide variety of functionalization and the N-oxides tolerated nitro groups and
halogens (Figure 17). A few non-aromatic substrates were also shown to work in both cases, but with
diminished yields.
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6. Diphenylmethylsilane

Enones and Silyl Enol Ethers

The reduction of α,β-unsaturated aldehydes and ketones by diphenylmethylsilane was
explored [61]. All cyclic enones proceeded smoothly to their corresponding cyclic silyl enol ethers,
without any measurable side products formed, even in the presence of an isolated alkene (carvone)
(Figure 18). The acyclic enones produced the silyl enol ether and in both cases favored the Z-alkene
product. In the case of cinnamaldehyde, the styrene silyl ether product was isolated rather than
the enol ether. Other substrates with increased steric bulk at the β-position also gave measurable
amounts of 1,2-hydrosilylation product much like cinnamaldehyde. Using the more reactive
dimethylphenylsilane (discussed later), enones were shown to undergo iterative hydrosilylation
reactions to give cis-β-siloxyalkylsilanes in high yields, although they tended to require long (40 h)
reaction times.
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Figure 18. α,β-Unsaturated ketone reactivity: (a) Reduction of cyclic enones; (b) reduction of acyclic
enones and cinnamaldehyde; (c) iterative stereoselective silylation of enones.

7. Dimethylphenylsilane

7.1. Reductive Amination

The borane/silane system was also found to be capable of promoting the reductive amination of
aniline and benzaldehyde with a variety of wet solvents (Figure 19). The process of reductive amination
requires a catalyst that is tolerant of water due to its production as a byproduct of the process. Most
Lewis acid boron catalysts therefore fail due to their incompatibility with water. The water tolerance of
BCF was first discovered by Yamamoto’s group [62] and recently Ingleson and coworkers [63] were
able to show that BCF is uniquely capable of promoting a reductive amination. They extended the
reaction to a ketone, acetophenone, and still reported a reasonable yield of product. This represents a
mild alternative to sodium cyanoborohydride-promoted reductive amination reactions.
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Figure 19. Reductive amination of aniline and benzaldehyde (acetophenone) with various solvents,
temperatures, and reaction times to produce N-benzyl aniline products.

7.2. Conjugated Esters and Amides Leaving Carbonyl Groups Intact

Unsaturated esters and amides, both acyclic and cyclic were shown to be substrates for
reduction, and in all cases, the carbonyl functionality remained intact, while the alkene was
reduced [64]. One substrate from each class was screened that had an isolated alkene to
demonstrate the regiochemistry of the reaction (Figure 20). Three butenolide lactones and a
5,6-dihydropyridone-lactam were shown to follow the expected reactivity pattern to generate the
α-silyl lactone and lactam respectively.
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Figure 20. Selective conjugate reduction of α,β-unsaturated esters (a); amides (b); lactones/lactams (c).

7.3. Ring Opening and Closing Cascades of Furans

A variety of substituted furans were shown by Chang and coworkers to be substrates for a
two-step, ring opening and ring closing process [65]. The reaction could be controlled based on catalyst
loading and silane equivalents used (Figure 21). This method provides a reliable method to access
α-siloxy-(Z)-alkenylsilanes and anti-(2-alkyl) cyclopropylsilanes, both of which are useful synthetic
intermediates that can be further elaborated.
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8. Diethylsilane

8.1. Nitriles to Generate Primary Amine Salts

A mild extension of the method to reduce nitriles to their corresponding primary amines was
discovered in 2015 by Chang and coworkers [66]. A variety of aryl and alkyl nitriles were screened and
all proceeded smoothly to the bis-silyl protected amine that was hydrolyzed with dilute aqueous HCl
to produce the hydrochloride salt of the primary amine (Figure 22). All nitriles screened proceeded in
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greater than 80% yield and displayed tolerance for functionalities such as NO2, halogens, heterocyclic
aromatics, aryl silyl ethers, cyclic alkenes, and alkynes. In select cases the silyl imine could be isolated
when 1.0 equivalents of silane were used.
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Figure 22. Two-step reduction and deprotection of aryl and alkyl nitriles to their corresponding primary
amine hydrochloride salts using diethylsilane and 1 M HCl.

8.2. Internal Ynamides Leading to β-Silyl (Z)-Enamides

The substrate scope was further advanced when Chang and coworkers discovered that internal
ynamides, the close relative to the enamine, were also susceptible to reduction using this catalytic
system [67]. In their study, they examined a variety of sulfonamide protected ynamides and noted a
unique but reproducible regiochemistry for the reduction (Figure 23). In all cases, regardless of alkyne
or amine substituent, the reduction occurred such that the silyl group was added onto the β-carbon
rather than the typical α-carbon for enamines. Additionally, they noted the exclusive formation of the
(Z)-enamide product, attributed to the β-silicon effect on their postulated ketene iminium intermediate
in the process.
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9. n-Butylsilane

Polycarboxylic Acids into Their Corresponding Alkanes

The ability of this catalytic system to reduce carboxylic acids was truly tested by
the McRae group when they decided to investigate the reduction of substrates bearing
more than one carboxylic acid functionality (Figure 24) [68]. The study explored a wide
variety of poly-carboxylic acid substrates in which the only notable substrates that resisted
reduction were mellitic acid (1,2,3,4,5,6-benzenehexacarboxylic acid) and the non-aromatic variant
1,2,3,4,5,6-cyclohexanehexacarboxylic acid. Yields varied widely depending on substrate, but most
reactions achieved yields of around 70% or better. Yields of the transformations were all GC based, and
therefore could be considered to be higher than the yield that might be obtained following isolation.
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Figure 24. Reduction of mono-, di-, tri-, tetra-, and hexacarboxylic acids to methyl groups. * Use of
n-butylsilane resulted in a 19% and 32% yield of the desired product, respectively.

10. Tetramethyldisiloxane

Secondary and Tertiary N-Phenyl Amides

A wide variety of secondary and tertiary amides were successfully reduced to their corresponding
amines with tetramethyldisilane by Adronov and coworkers in 2014 [69]. A variety of substituted
aromatic, heteroaromatic, cyclooctyne, and alkyl amides were examined and were found to generally
good substrates for reduction. (Figure 25). Only one amide in which both the carbonyl and amino
groups were alkyl-based that gave a reasonable yield was included and resulted in a 65% yield.
A similar study by Cantat confirmed that aliphatic amides were not reliable substrates for reduction [70].
There were six additional substrates included in the study that did not produce any of the desired
product, indicating that amides remain to be challenging substrates for this reduction.
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11. Polymethylhydrosiloxane

Aldehydes and Ketones

The Chandrasekhar group made use of a polymeric silane (polymethylhydrosiloxane) (PMHS)
to promote the defunctionalization of various carbonyl groups to their corresponding methylene
groups [71]. They found that both aromatic and aliphatic aldehydes and ketones were reduced to their
corresponding alkanes in very high yields (Figure 26). In general, the reaction was tolerant of most
functional groups. Benzylamide was unreactive under any of the conditions screened indicating that
amides, even sterically accessible amides, are challenging under these conditions.
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Figure 26. Defunctionalization of carbonyl groups using polymethylhydrosiloxane.

12. Stereoselective Reactions

12.1. σ-π Chelation-Controlled Stereoselective Hydrosilylation of Ketones

1,2 Asymmetric induction has been used in the observation of a slight preference for
the anti-conformation (syn/anti 1:1.5) in the hydrosilylation of 2-methyl-1-phenylpentan-1-one
(Figure 27) [72,73]. The Felkin-Ahn model justifies predominant hydride transfer to the Si face of
the prochiral ketone in which the propyl group is assigned as the largest substituent (Figure 28a).
The low selectivity is attributed to the small relative size difference between the propyl and
methyl α-substituents. Surprisingly, treatment of 2-methyl-1-phenylpent-4-yn-1-one under the same
conditions (2 mol% B(C6F5)3 and Et3SiH), resulted in predominant formation of the syn isomer
(syn/anti 7:1). The unanticipated reversal in diastereoselectivity might originate within σ−π chelation of
the β alkynyl and carbonyl lone pairs to a bridging R3Si cation. A six-membered transient intermediate
is hypothesized to undergo hydride attack on the less hindered face, resulting in the syn isomer
(Figure 28b).
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Figure 28. Felkin-Ahn models for: (a) propyl; (b) propargyl substituted reactants.

Stereoselectivities were decreased when bulkier groups were appended to the propargylic site,
apparently diminishing the chelating interactions (Figure 29). In contrast, increasing the size of the
substituent appended to the keto carbon enhanced syn selectivity (15:1 for o-MePh and >30:1 for tBu).
This effect is attributed to increased steric repulsion with the α-methyl, shifting its position anti to R1

and occluding hydride attack from this face (Figure 30). Asymmetric induction was also induced in
the 1,3 system of alkynyl ketones, with preferential formation of the anti-product.
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Figure 30. Half-chair conformations explaining syn-selectivity: (a) relatively small R1 groups do not
distort the carbonyl conformer framework; (b) increasing the size of R1 causes a conformational change
of Me group favoring attack from the top, increasing syn selectivity.
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12.2. α-Diketones to Silyl-Protected 1,2-Diols

Stereoselectivity may conversely be manipulated in the selection of silane rather than substrate
characteristics, as the bis(hydrosilylation) of α-diketones forms the meso (anti) or dl (syn) product
based on steric constraints about the silane center [74,75]. Treatment of α-diketones with the bridged
tetraphenyldisilane formed nearly exclusively the meso product, with the highest selectivity observed
within the most sterically hindered bisphenyl ketone (Figure 31). Steric hindrance encountered in
ring formation of the bis-oxygen bridged product arguably favors the observed stereoselectivity.
The Cram-chelate model may also be relevant, as hydride attack from the hydridoborate favors the H
side of a six-membered intermediate including the bridging Ph2Si-SiPh2 chelator. Monosilanes are also
subject to analogous steric concerns, as Me3SiH preferred the meso product while Ph3SiH preferred
the racemic stereoisomer (Figure 32).
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Figure 31. Meso selectivity of α-diketones reacted with tetraphenyldisilane.
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Figure 32. Stereoselectivity of α-diketone silylation product based on silane.

These results were based on the relative size of the first silyl ether addition, as larger silanes were
ranked as the largest substituent and placed orthogonal in the Felkin-Ahn model, while smaller silanes
were superseded by substituents of the substrate (Figure 33b).
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13. Mechanistic Studies

13.1. Silane Activation Mechanism

Early mechanistic exploration of the B(C6F5)3-silane catalytic reduction of carbonyl functionalities
by Piers and Parks yielded unprecedented results [52]. Nucleophilic activation of the Si-H bond
concurrent with electrophilic catalytic activation of the carbonyl oxygen had been observed within
representative systems of amide or halide nucleophiles paired with a Lewis acid such as ZnCl2 or
BF3·Et2O. However, the observed reactivity series ethyl benzoate >> acetophenone > benzaldehyde,
in which reactivity decreased parallel to base strength, countered the assumed catalytically pertinent
dative interaction between the carbonyl’s lone pair and the tris(pentafluoro-phenyl)borane catalyst.
These results were further reinforced by an increase in rate proportional to the degree of electron
withdrawing capabilities of X-substituted aromatic carbonyls in a Hammett study, as well as by a
decrease in the rate constant upon increase in carbonyl substrate concentration (Figure 34). Considering
the reaction was determined to be first order in silane, Piers, et al. inferred a novel role for the
tris(pentafluorophenyl)borane catalyst. Their hypothesis required the “liberation” from the basic
carbonyl group in which the Lewis acid catalyst activates the Si-H bond for nucleophilic attack from
the carbonyl substrate.
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Continuation of previous mechanistic inquiry culminated in a new proposed mechanism
(Figure 35) initiated with Si-H coordination to the boron center of the Lewis Acid catalyst [76].
The complex is subsequently attacked by the substrate as hydride is transferred from silane to boron,
garnering an “incipient” silyloxonium ion paired with a hydridoborate counter anion. Reduction is
fulfilled in hydride transfer from the hydridoborate to the carbonyl carbon, electrophilically enhanced
due to silyl activation of the carbonyl oxygen. Evidence for a silane-borane complex was procured in
the observed complete protium/deuterium exchange upon mixture of 1:1 Et3SiH and Ph3SiD with 10%
B(C6F5)3. Additionally, a primary kinetic isotope effect of 1.40 noted upon treatment of acetophenone
with catalyst and Ph3SiX (X = H/D) agrees with the proposed hydride withdrawal as Si-H hydride
abstractions have produced isotope effects of 1.4–1.9. Nucleophilic attack of the borane/silane complex
was deduced based on competition reactions in which the more basic substrate was preferentially
reduced at significant ratios of >96:1; for example, benzaldehyde or acetophenone with less basic
ethyl benzoate. However, it must be noted that the more basic substrate proceeds at a slower rate
independently, presumably due to the deleterious effects of borane adduct formation. While the
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source of hydride reduction may have originated from either unreacted silane or the hydridoborate
ion, the latter was confirmed. Under controlled conditions in which silane was presented as a sole
source of hydride, an inconsistent product distribution was generated, suggesting the hydridoborate
as the ultimate reductant. In these alternative reductive systems, catalytic activity was engendered
by silylium in the presence of a borate counterion, effectively disabling its potential to act as a Lewis
acid hydride recipient: (Et3Si)+(B(C6F5)4)−, (Ph3C)+(B(C6F5)4)−, or 1,2-(B(C6F5)2)2C6F4/(Et3SiH) in
which hydride was immediately removed from the silane to form a hydridoborate/silylium complex.
Acetophenone was introduced to one of the catalytic pairs along with triethylsilane, producing the
exhaustively reduced ethylbenzene/ hexaethyldisiloxane in a 1:1 mixture to unreacted carbonyl.
In contrast, tris(pentafluorophenyl)-borane catalyst had generated the silyl ether preliminary reduction
product “exclusively”. The alternative reductive pathway was proposed to proceed through a unique
mechanism in which the carbonyl first binds to the silylium species, creating an activated substrate
reduced by hydride transfer from triethyl silane to produce silyl ether and regenerate the silylium
catalyst. The newly formed silyl ether oxygen attacks the developing silylium, forming a disilyl ether
oxonium in which the disilyl ether, Et3SiOSiEt3, readily dissociates to form a transient carbenium
intermediate reduced via silyl hydride abstraction to produce the fully deoxygenated product.
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functionalities.

13.2. Conclusive Evidence for an SN2-Si Mechanism

The fate of the silane-borane complex was elucidated through an elegant Walden inversion,
culminating in an SN2 displacement of the borane by the attacking nucleophilic substrate [77].
Investigation of a potential silane partner noted complete absence of reactivity in sterically encumbered
silanes with a tert-butyl substituent. Thus, further experimentation was conducted with an isopropyl
substituted, 90% enantioenriched silane in the presence of enriched prochiral acetophenone and
the tris(pentafluorophenyl)borane catalyst. A diastereomeric mixture of the silyl ether adduct was
obtained (d.r. 74:26) under the reaction conditions. This mixture was reductively cleaved with
DIBAL-H maintaining the configuration at silicon-observing 97% inversion to S at silicon and a
significant 38% enantiomeric excess of the generated alcohol (Figure 36). It is thus speculated that
interaction of acetophenone with chiral silicon favors hydride transfer to the si face. An SN1 mechanism
proceeding through an achiral silylium ion was negated, as a racemic mixture of products would
result. In addition, combination of enantioenriched R silane with deuterated achiral silane treated with
B(C6F5)3 revealed complete isotopic dispersion as well as the telling conservation of stereochemistry
about the chiral silane (Figure 37). Thus, a nucleophilic attack anti to a Si-H-B bridging arrangement
was proposed, potentially proceeding through a four-membered transition state that would permit
hydrogen exchange.
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Figure 37. Isotopic H/D scrambling in the presence of tris(pentafluorophenyl)borane with silane
retention via four-membered transition state.

13.3. Direct Observation of a Borane-Silane Complex

Conclusive evidence for borane’s activation of the Si-H bond was obtained by direct
characterization of the respective complex collectively by Piers and Tuononen [77]. A modified borane
catalyst with increased Lewis acidity was synthesized, (1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-
1-boraindene) (Figure 38, (I)) and treated with triethylsilane.
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Figure 38. Spectral evidence for borane-silane complex formation.

Unique to this Lewis acid is a characteristic red hue at 465 nm which shifts to yellow as it
undergoes complex formation. Thus, a visible indication of successful silane-borane interaction
(Figure 38, (II)) was observed upon lowering the temperature to 195 K. 19F-NMR spectroscopic analysis
also demonstrated a significant upfield shift of the fluorine ortho to the boron center proportional
to decreasing temperature as well as to varying silane concentration. Weakening of the Si-H bond
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was evident in diminishing values of the JSi-H coupling constant from 177 to 107 Hz, as well as in an
infrared shift in the Si-H bond from 2103 cm−1 to 1918 cm−1 upon complex formation (Figure 38).
Proposal of an Si-H-B bridge was based on observed distortions from free Si-H (≈1.48 Å) and B-H
(≈1.14 Å) to 1.51 Å and 1.46 Å, by X-ray crystallography, respectively, indicative of hydride abstraction
as the Si-H bond lengthens.

14. Quantum Chemical Calculations

14.1. Stable Complex Between Trimethyl silane and B(C6F5)3

Quantum chemical calculations comparing the proposed catalytic activities of the borane catalyst-
the canonical carbonyl activation pathway versus the Frustrated Lewis Pair strained priming of the Si-H
bond for heterolytic cleavage- supported that the latter is more energetically favorable (Figure 39) [78].
Carbonyl activation initially seems plausible because in solution, a complex between B(C6F5)3 and
acetone is 8.2 kcal/mol lower in free energy than the liberated species. This proposed pathway is
concerted as only one key four-membered transition state is observed upon attack of the silane to
the carbonyl moiety. This affords an oxonium species bound to both the silyl and borane catalytic
components, albeit the energetics of the transition state are disconcertingly high at 33.0 kcal/mol
(Figure 40). Facile dissociation of the borane catalyst alleviates the steric strain accompanying the aryl
substituents and consummates the process yielding the final silyl ether product. In contrast, the silyl
activation pathway proceeds through five transition states, beginning with the silane-borane adduct
via a hydride bridge requiring a mere 3.2 kcal/mol complexation energy (Figure 41). As the carbonyl
attacks the backside of the quasi linear Si-H-B array, the original Si-H and B-H bond distances of
1.555 and 1.411 Å respectively are distorted as hydride abstraction by the Lewis acid is enabled by
a “pushing” of the Si-H bond by the carbonyl moiety (Figure 41). Free energies of 14.6 (TS3) and
15.8 (TS4) kcal/mol of the transition states involving the initial stages of carbonyl attack are significantly
lower than the transition state elaborated in the carbonyl activation mechanism. Dissociation into
the hydridoborate and silyloxonium species is observed, which remain as a close contact ion pair
through the final three transition states- “rotation of the acetone plane” (TS5), “transformation into
another arrangement of the ion-pair complex” (TS6), with the awaited hydride transfer from the
borane anion to the carbonyl carbon concluding the reduction pathway (TS7). Further calculations
comparing B(C6F5)3 to frequently used Lewis acid catalysts BF3 or BCl3 which operate via a carbonyl
activation pathway has revealed that the unique catalytic pathway of tris(pentafluorophenyl)borane
is characterized by a stronger Lewis Acidity towards the silane which is “transferred to the reactive
orbital of silane” strengthening the carbonyl’s nucleophilic attack. Further, interactions between the
ortho fluorine atoms of the borane catalyst with the silane center stabilize the unfavorable deformations
required to form the frustrated pair Si-H-B complex.
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Figure 40. Intermediates and transition states of the carbonyl-activation reduction mechanism.
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Figure 41. Intermediates and transition states of the silane-activation reduction mechanism.

14.2. Imines via Silyliminium Intermediates

Study of imine reduction has revealed an analogous silane-activation mechanism proceeding
through a silyliminium/hydridoborate ion pair [79]. The function of the tris(pentafluorophenyl)-
borane catalyst as an activator of the Si-H bond was deduced based on the effect of the basicity of
nitrogen on reaction rate (Figure 42). It was found that through variance of the N-substituent, the rate
of reaction was easily manipulated. Powerful electron withdrawing groups such as SO2Ph “which
prevented imine complexation to B(C6F5)3 as observed in 19F-NMR” and tert-butyloxocarbonyl were
reduced most rapidly. Reaction rates increase with substituent size in the series tert-butyl >> benzyl >>
allyl >> methyl presumably due to the increasing impediment to interaction with the boron Lewis acid.
No reduction occurs in the presence of strong complex formation, as evident in the methyl substituent,
as free borane is required for catalytic silane activation. Spectroscopic data obtained from 19F-, 11B-,
29Si-, and 1H-NMR support the formation of a silyliminium-hydridoborate ion pair upon hydrogen
abstraction from the silane, concurrent with imine’s nucleophilic attack of silane. The hydridoborate
anion is observed in 19F-NMR even as the reaction is consummated in the formation of amine product,
implying imine activation may be effected by the PhMe2Si cation rather than by B(C6F5)3.
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Figure 42. Reaction rate and yield in the reduction of imines based on substituents.

14.3. Refined Imine Hydrosilylation Mechanism Utilizing a Chiral Borane

The mechanism of imine hydrosilylation was conclusively studied using uncharacteristically small
loadings of B(C6F5)3 (approximately 0.1 mol%), lowering the reaction rate to enable the observation of
unexpected key intermediates [80]. An allusion to a unique reaction pathway was initially detected
within the imine reduction of 1,1-methylphenyl N-benzyl imine with a chiral borane utilized as a
stereochemical probe to confirm the presumed method previously elucidated in carbonyl reduction.
However, accompanying the production of N-silylated amine, unexpected intermediates of N-silylated
enamine as well as free amine were observed in equimolar ratios, based on characteristic 13C NMR
peaks. Curiously, these intermediates were more pronounced at high concentrations of THF, and
hindered the overall reaction rate. The free amine was explicated with an equilibrium between the
imine and protonated THF, producing an iminium ion that was subsequently reduced to the free
amine by the hydridoborate anion. Conversely, enamine formation occurred in the deprotonation
of the silyliminium ion via THF or unreacted imine acting as a BrØnsted base. The latter process
would explain equimolar intermediate formation, as deprotonation induced by the imine produces the
iminium predecessor to the free amine intermediate. The same intermediates at equimolar ratios were
observed with catalysis of B(C6F5)3 at markedly low loadings (approximately 0.1%). Conversion of the
free amine to the N-silylated product was achieved via Si-N coupling mediated by the boron catalyst,
proceeding through a unique ammonium-hydridoborate ion pair (Figure 43). The remarkable stability
of this ion complex is hypothesized to proceed through an alternative route in which ammonium
protonates the N-silylated enamine intermediate, to produce the N-silylated amine and silyliminium
ion, respectively. Intermediate formation was further supported in a labeling experiment in which
the methyl group of the imine starting material was fully saturated with deuterium which was then
transferred to the nitrogen of the free amine concurrent with enamine formation. Final reduction by
the hydridoborate ion via silane activation was confirmed with the inclusion of deuterium, which
resulted in deuterium’s final placement at the tertiary carbon of the product. The revised mechanism
including the deprotonation/protonation pathways is depicted below (Figure 44). The N-silylated
iminium ion (I) may lose an alpha proton to free imine (II), generating an iminium ion (III) and the
enamine intermediate (IV) denoted by pathway (b), or may undergo hydridoborate reduction to form
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N-silylated amine (V) denoted by pathway (a). Potential enamine-mediated proton removal from the
N-silylated ammonium ion (VI) forms the silyl iminium ion (IX) and the N-silylated amine (VIII).
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14.4. Proposed Mechanism for the Exhaustive Reduction of Alcohols and Ethers

Reduction of primary alcohols in high yield has been observed with excess Et3SiH and catalytic
loadings of tris(pentafluorophenyl)borane catalyst [27]. Successful transformation has also been
achieved with HSiPh3, HSiMePh2, and HSiMeEt2. In contrast, secondary and tertiary alcohols
yield silyl ethers with the exception of di- and triphenylmethanol, which are effectively reduced
to hydrocarbons. While the lack of reduction of secondary and tertiary alcohols suggests an SN2
mechanism, conflicting results were observed in the treatment of secondary S-methylphenyl silyl
ether with DSiEtMe2 and B(C6F5)3. For the latter substrate, the expected inversion of configuration
(41% ee) was obtained only in pentane. Enhancing the dielectric constant and the potential to
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support a carbocationic intermediate with the use of dichloromethane produced a racemic mixture
with negligible enantiomeric excess of 2% retention. Further analysis of the reduction of primary
alcohols utilizing the model system of phenylethanol-triethylsilyl ether, 1:1 HSiEt3 to DSiEt3, and
10 mol% B(C6F5)3 exhibited no primary kinetic isotope effect that would be expected in an SN2
mechanism in which reductive transfer of hydride/deuteride would occur in the rate determining step
suggesting an SN1 pathway stabilized by the phenonium cation intermediate (Figure 45a). However,
unexpected product distributions (90 I:10 II rather than equimolar) of the analogous deuterated alcohol-
1,1-dideuteriophenethyl alcohol- negated an SN1 pathway in this case (Figure 45b). Further kinetic
study of 1,1-dideuteriophenethyl alcohol reduction determined facile formation of the silyl ether
was followed by a laborious slow reduction to form the hydrocarbon. Based on this mechanistic
disagreement, it was inferred that the reduction of alcohols possessing carbenium stabilizing groups
likely proceeds through two possible SN1 routes (Figure 46) while less labile alcohols proceed through
the aforementioned two step pathway (Figures 46 and 47).
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Figure 46. Suggested SN1 pathways for alcohols with: (a) and (b) carbocation-supporting aryl
substituents; (c) dehydro-condensation to silyl ether for less-stabilized alcohols.

Pathway A begins with the dative oxonium complex between the alcohol and borane Lewis acid
(Figure 46), which dissociates into the respective carbocation. This carbocation is reduced by the
silane to form the hydrocarbon product, silyl alcohol, and regenerated catalyst. Pathway B is similar
to carbonyl and imine reduction pathways, initially forming the silyl-borane frustrated pair from
which the silyl group is transferred to the alcohol to form a silyloxonium-hydriodoborate complex.
Silyl alcohol disengagement generates the transient carbocation, energetically reclaimed by hydride
transfer via hydridoborate to the stable hydrocarbon product. Alcohols devoid of electron donating
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substituents also interact with the silyl-borane pair to form an oxonium ion; however, at this point
dehydro-condensation forms the silyl ether, consuming one equivalent of silane (Figure 46). Exhaustive
reduction may occur in the presence of excess silane as the silyl ether attacks the silyl substituent from
the silyl-borane adduct to form a second oxonium ion, reduced by hydridoborate (Figure 47). Silyl
transfer from the silyl-borane adduct to the silyl ether is rate determining due to steric concerns in the
coordination, rectifying the near-exclusive preference for primary alcohol reduction.
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15. Conclusions

The tris(pentafluorophenyl)borane-silane Frustrated Lewis pair has been demonstrated in its
broad range of reductive applications across a multitude of functional groups including aldehydes
and ketones [54], imines [61], amides [33], nitriles [49], olefins [5], ethers [27], and carboxylic
acid derivatives [29] to be an invaluable alternative to harsh metallic conditions or its boron
trihalide alternatives. Its catalytic proficiency under mild aqueous conditions has rendered its
utilization irresistible and led to its burgeoning demand as a potent catalyst uniting organic and
inorganic spheres. The strained nature of the silyl-borane hydride bridging system has enabled
its wide breadth of exploitation as strategic manipulation of silyl or reagent substituents permits
stereoselectivity. This is exemplified in asymmetric induction reliant on sigma-pi chelation of
alkynyl systems [55], manipulation of stereochemistry dependent on steric hindrance about the
silane [56], as well as anti-addition across olefins [5]. Regiochemical control has been exhibited
in preferential placement of the silylium species at the terminal carbon of olefins [5], reduction of
the terminal carbon concurrent with hydrosilylation of the internal carbon in the deoxygenation
of 1,2 diols [40], as well as the preferential addition to the beta carbon of internal ynamides [50].
Further, tris(pentafluorophenyl)borane silane catalysts may bear promising applications in synthetic
pathways requiring functional group selectivity, perhaps eliminating the need for cumbersome
protection-deprotection steps, as exhibited in the exclusive reduction of the olefin within conjugated
esters and amides [47] and the reduction of nitriles in the presence of nitro, halogen, and olefin
groups [49]. The extent of the reaction towards full deoxygenation may be halted at the preliminary
silyl ether with intentional addition of one molar equivalent of silane [22,30] due to the stoichiometric
nature of the reduction. Incumbent to the findings presented in this review are continued pursuit
of optimal conditions for reductions yet to proceed in high yields such as aliphatic amides [52].
We propose continued development of the tris(pentafluorophenyl)borane catalyst will rely on the
selection of appropriate silane in regards to its stereoelectronic characteristics to achieve efficient
reduction with stereo-, regio-, and functional selectivity.
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