

SYNTHETIC EFFORTS TOWARD HYPOESTOXIDE, PLATENSIMYCIN, AND GUTTIFERONE G

by Nicholas Adam Mcgrath

This thesis/dissertation document has been electronically approved by the following individuals:
Njardarson,Jon (Chairperson)
Coates,Geoffrey (Minor Member)
Ganem,Bruce (Minor Member)

SYNTHETIC EFFORTS TOWARD HYPOESTOXIDE, PLATENSIMYCIN, AND GUTTIFERONE G

A Dissertation
Presented to the Faculty of the Graduate School of Cornell University
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

by
Nicholas Adam McGrath
August 2010
© 2010 Nicholas Adam McGrath

SYNTHETIC EFFORTS TOWARD HYPOESTOXIDE, PLATENSIMYCIN, AND GUTTIFERONE G

Nicholas Adam McGrath, Ph. D.

Cornell University 2010

Hypoestoxide is a novel diterpenoid isolated from a tropical shrub, hypoestes rosea. It has been shown to exhibit promising anti - cancer, malarial, and inflammatory activity. In particular, the in vivo anti-angiogenic activity that inhibits vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) make it especially interesting. Along with this biological profile, the challenging macrocyclic structure of hypoestoxide makes it a target of great interest to the synthetic community. The synthesis of this molecule's complex macrocyclic core was accomplished by using relay ring closing metathesis, and post-cyclization modifications were controlled by the shape of the molecule.

Platensimycin is a recently isolated natural product produced by Streptomyces platensis. It was discovered in a novel antibiotic assay by screening a large number of South African soil samples. Platensimycin has been shown to have a unique mechanism of action by inhibiting Fab F, an enzyme responsible for bacterial fatty acid synthesis. In addition to the exciting biological activity, platensimycin has an intriguing molecular structure consisting of a hydrophobic and structurally compact core, and a hydrophilic aromatic head group. The synthesis of this molecule relied on a novel vinyl oxirane ring expansion to access the oxa-bicyclic moiety and an alkylative dearomatization to complete the carbocyclic core.

Guttiferone G belongs to the family of [3.3.1] bicyclic polyprenylated phloroglucinol derived natural products, which have been isolated from various plant species found primarily in the tropical or subtropical regions. Their biological profiles have been shown to rival any known natural product class in terms of diversity and activity. It is this vast biological activity and structural similarity that make the development of a general approach to this family of particular interest. The common bicyclic core of these compounds was accessed by using an intramolecular bis-radical cyclization into a dienone that was itself made by oxidative dearomatization.

BIOGRAPHICAL SKETCH

Nicholas Adam McGrath was born in Fairmont, Minnesota, on September 11, 1980, the son of James and Ruth McGrath. From an early age he excelled in school and particularly enjoyed courses in mathematics and science. He attended $1^{\text {st }}$ through $7^{\text {th }}$ grades at three schools while growing up: Budd Elementary ($\left.1^{\text {st }}-2^{\text {nd }}\right)$, Lincoln Elementary $\left(3^{\text {rd }}-4^{\text {th }}\right)$, and Fairmont Junior High $\left(5^{\text {th }}-7^{\text {th }}\right)$. Even though classes were easy for him, at that time he was more interested in gym class and chasing girls around the playground than thinking about the underlying scientific principles that surrounded him.

After finishing his elementary education he attended $8^{\text {th }}$ through $12^{\text {th }}$ grades at Fairmont High School. Here he continued with his scholastic success even with much of his time being devoted to football or track practice, and the rest working part-time at the local grocery store. It was during this time that his interest in science was really triggered. The excitement and enthusiasm that both his biology teacher Mr. Kerburg and his chemistry teacher Mr. Segar displayed in class inspired him to learn more about the world around him.

After graduation, Nick attended the University of Minnesota-Duluth on a full scholarship to study chemistry. During his undergraduate studies at UMD, he was fortunate for the opportunity to conduct research in the lab of Professor Ron Caple studying the stabilizing effect of sulfur on proximal carbocation intermediates. After graduation, Nick elected to stay at UMD and joined the research group of Professor Robert Carlson, this time working with sulfur-stabilized carbanions and their utility in organic synthesis. This two year hiatus was well planned because his fiancée (now wife), Jillian, had two years remaining in her psychology studies at UMD.

With Nick's studies in Duluth drawing to a close, he and Jillian were married
on June 11, 2005. They moved across the country so that Nick could begin his doctoral studies at Cornell University. There Nick joined the relatively new research group of assistant professor Jón Njarðarson to work on natural product total synthesis. Spending five years at Cornell certainly opened his eyes to the world around him and gave him a taste of life outside the Midwest. Nick has really enjoyed his time in Ithaca and especially appreciates all of people he has met and the countless relationships he had the opportunity to build. He now looks forward to his new position in the lab of Professor Ronald Raines at the University of Wisconsin, Madison and all of the opportunities that will come his way in the future.

ACKNOWLEDGMENTS

Thanks to my family for their praise and love throughout the years. Thanks to my wife, Jillian, for putting up with my long hours and for being there when I needed support. Thanks to the entire Njarðarson group past and present for everything they have taught me over the past 5 years. Thanks to my advisor, Jón Njarðarson, and my committee members, Bruce Ganem and Geoff Coates, for their support and praise during my graduate studies at Cornell. Finally, thanks to all of the wonderful people that I have met and have developed long lasting friendships with while in graduate school.

TABLE OF CONTENTS

BIOGRAPHICAL SKETCH iii
ACKNOWLEDGMENTS v
LIST OF FIGURES viii
LIST OF SCHEMES ix
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
PREFACE xiv
Chapter 1 Hypoestoxide and Verticillol
1.1 Background and Significance 2
1.2 Other Relevant Synthetic Work 3
1.3 Our Synthetic Efforts 6
References 15
Chapter 2 Platensimycin
2.1 Background and Significance 19
2.2 Other Relevant Synthetic Work 20
2.3 Our Synthetic Efforts 31
References 37
Chapter 3 Guttiferone G
3.1 Background and Significance 43
3.2 Other Relevant Synthetic Work 45
3.3 Our Synthetic Efforts 52
Appendix 1
A1.1 Experimental Procedures for Chapter 1 62
A1.2 NMR Data for Chapter 1 87
A1.3 DFT Calculations for Chapter 1 165
Appendix 2
A2.1 Experimental Procedures for Chapter 2 169
A2.2 NMR Data for Chapter 2 184
Appendix 3
A3.1 Experimental Procedures for Chapter 3 217
A3.2 NMR Data for Chapter 3 227
A3.3 DFT Calculations for Chapter 3 255
Appendix 4
A4.1 A Graphical Journey of Organic Architectures
That Have Improved Our Lives 266
A4.2 Top Selling Brand Name Drugs in 2008 268
References 276

LIST OF FIGURES

2.1 Structures of Platensimycin and Platensic Acid 19
2.2 Synthetic Approaches to Complete the Platensimycin Core 20
3.1 Guttiferone G and Hyperforin 43
3.2 Guttiferones Containing Locally Symmetrical Bicyclic Cores 45
A1.1 NMR Overlay of Hypoestoxide Isomers 164
A4.1 Graphical Representation of the 2008 Top Selling Drugs 266

LIST OF SCHEMES

1.1 Proposed Biosynthetic Origin of Hypoestoxide and Verticillol 3
1.2 Kato's First Synthetic Efforts Toward Verticillene 4
1.3 Pattenden's Synthesis of Verticillene 5
1.4 Kato's Synthesis of Epiverticillol 6
1.5 Possible Atropisomers of Hypoestoxide 7
1.6 Retrosynthesis of Hypoestoxide 8
1.7 Synthesis of Metathesis Precursor 9
1.8 Tether-Assisted Ring Closing Metathesis 10
1.9 Synthesis of Hypoestoxide Isomer 11
1.10 Synthesis of Desoxy atrop-Hypoestoxide 12
1.11 Synthesis of Another Isomer of atrop-Hypoestoxide 13
1.12 Synthesis of a Verticillol Isomer 14
2.1 Nicolaou's Total Synthesis of Platensimycin 21
2.2 Nicolaou's Asymmetric Syntheses of Platensimycin 22
2.3 Snider's Synthesis of Platensimycin 23
2.4 Nicolaou's Stetter/Radical Based Synthesis of Platensimycin 24
2.5 Yamamoto's Synthesis of Platensimycin 24
2.6 Mulzer's Synthesis of Platensimycin 25
2.7 Corey's Synthesis of Platensimycin 26
2.8 Nicolaou's Chiral Pool Based Synthesis of Platensimycin 27
2.9 Eun Lee's Synthesis of Platensimycin 27
2.10 Matsuo's Synthesis of Platensimycin 28
2.11 Daesung Lee's Synthesis of Platensimycin 29
2.12 Ghosh's Synthesis of Platensimycin 30
2.13 Nicolaou's Fifth Synthesis of Platensimycin 30
2.14 Wang's Synthesis of Platensimycin 31
2.15 Retrosynthetic Analysis of Platensimycin 32
2.16 Synthesis of the Functionalized Aryl Fused Oxatropane 33
2.17 Oxidative Dearomatization/Cyclization Attempts 34
2.18 Intramolecular Alkylative Dearomatization 35
2.19 Efficient Synthesis of the Platensimycin Core 36
3.1 Nicolaou's Synthetic Efforts Toward Garsubellin A 46
3.2 Stoltz's Synthetic Approach to [3.3.1] Bicyclic Core 46
3.3 Shibasaki's Synthesis of Garsubellin A and ent-Hyperforin 47
3.4 Danishefsky's Total Synthesis of Three Members of This Family 48
3.5 Porco's Synthesis of Clusianone 49
3.6 Marazano's Synthesis of Clusianone 50
3.7 Simpkins's Synthesis of Clusianone and Garsubellin A 50
3.8 Other Synthetic Contributions 51
3.9 Guttiferone G Retrosynthesis 52
3.10 Attempted Bis-Radical Cyclization 53
3.11 Synthesis of the Bridged Bicyclic Core of the Guttiferones 54
3.12 Rationalization of Stereochemical Outcome 55

LIST OF TABLES

3.1 Asymmetric Desymmetrization of $\mathbf{3 . 7 4}$ 56
A1.1 2D-NMR Data for $\mathbf{1 . 3 7}$ 106
A1.2 2D-NMR Data for $\mathbf{1 . 3 8}$ 109
A1.3 2D-NMR Data for 1.38-(Bis-Acetate) 111
A1.4 2D-NMR Data for $\mathbf{1 . 3 9}$ 113
A1.5 2D-NMR Data for $\mathbf{1 . 4 0}$ 115
A1.6 2D-NMR Data for $\mathbf{1 . 4 1}$ 117
A1.7 2D-NMR Data for $\mathbf{1 . 4 2}$ 120
A1.8 2D-NMR Data for $\mathbf{1 . 4 5}$ 131
A1.9 2D-NMR Data for $\mathbf{1 . 4 6}$ 135
A1.10 2D-NMR Data for $\mathbf{1 . 4 9}$ 142
A1.11 2D-NMR Data for $\mathbf{1 . 5 0}$ 146
A1.12 2D-NMR Data for 1.52-(Carbonate) 150
A1.13 2D-NMR Data for $\mathbf{1 . 5 2}$ 154
A1.14 2D-NMR Data for $\mathbf{1 . 5 3}$ 158
A1.15 2D-NMR Data for Authentic Hypoestoxide 1.1 161
A1.16 Hypoestoxide Isomer Analysis 163
A1.17 Calculated Energies for Atropisomers of Hypoestoxide 165
A3.1 2D-NMR Data for $\mathbf{3 . 6 6}$ 234
A3.2 2D-NMR Data for $\mathbf{3 . 7 3}$ 243
A3.3 2D-NMR Data for $\mathbf{3 . 7 4}$ 246
A3.4 2D-NMR Data for 3.74 (Enol Ether) 249
A3.5 2D-NMR Data for $\mathbf{3 . 7 5}$ 252
A3.6 Calculated Energies For Cyclization 255

LIST OF ABBREVIATIONS

AIBN	Azobisisobutyronitrile
BFGF	Basic fibroblast growth factor
BHT	Butylated hydroxytoluene
CAN	Ceric ammonium nitrate
COD	1,5-Cyclooctadiene
DBU	1,8-Diazabicycloundec-7-ene
DCM	Dichloromethane
DIAD	Diisopropyl azodicarboxylate
DIBAL-H	Diisobutylaluminum hydride
DMAP	4-Dimethylaminopyridine
DMDO	Dimethyldioxirane
DMF	N, N-Dimethylformamide
DMP	Dess-Martin periodinane
DMSO	Dimethyl sulfoxide
HATU	2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HFIP	Hexafluoro-2-propanol
HMPA	Hexamethylphosphoramide
IBDA	Phenyliodine(III) diacetate, $\mathrm{PhI}(\mathrm{OAc})_{2}$
KHMDS	Potassium bis(trimethylsilyl)amide
LDA	Lithium diisopropyl amide
LHMDS	Lithium bis(trimethylsilyl)amide
LTA	Lead tetraacetate, $\mathrm{Pb}(\mathrm{OAc})_{4}$
mCPBA	meta-Chloroperoxybenzoic acid

MOM	Methoxymethyl
Ms	Mesyl
NBS	N-Bromosuccinimide
NMO	N-Methylmorpholine N -oxide
OTf	Trifluoromethanesulfonate
PCC	Pyridinium chlorochromate
PIFA	Phenyliodine bis(trifluoroacetate)
PTSA	p-Toluenesulfonic acid
RRCM	Relay ring closing metathesis
RT	Room temperature
TBAF	Tetra-n-butylammonium fluoride
TBDPS	tert-Butyldiphenylsilyl
TBS	tert-Butyldimethylsilyl
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TIPS	Triisopropylsilyl
TMEDA	$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine
TMS	Trimethylsilyl
TPAP	Tetrapropylammonium perruthenate
Tr	Triphenylmethyl
Ts	p-Toluenesulfonyl (Tosyl)
VEGF	Vascular endothelial growth factor

PREFACE

Natural product total synthesis is an exciting area of research for many reasons. Organic synthesis makes it possible to assemble molecules of varying complexity in creative and efficient ways. These molecules might possess interesting biological activity, or have a really unique and challenging structure. Regardless, the ability to make complex molecules efficiently from readily available starting materials will always be an important accomplishment. In addition, synthesis gives us the opportunity to make minor modifications to the route and generate a vast array of structural analogs that can be screened for their activity. During the process of completing a total synthesis, obstacles may arise that require innovative thinking and often the design of new methods to overcome them. It is often these methods that are of most use to the chemical community. Finally, the training one receives while working on the total synthesis of a natural product can often be considered as valuable as the eventual outcome of the project. Organic synthesis is a discipline that is central to all areas of chemistry and the skills attained can be applied to countless areas of research.

Chapter 1

Hypoestoxide and Verticillol

1.1 Background and Significance

Hypoestoxide (1.1, Scheme 1.1) was isolated from the tropical shrub hypoestes rosea, found in the Nigerian rain forests. ${ }^{1}$ The extracts from these shrubs have been used for generations in folk medicine to treat various skin rashes and infections. Hypoestoxide has been shown in recent studies to exhibit promising anti- cancer, ${ }^{2}$ malarial, ${ }^{3}$ and inflammatory activity. ${ }^{4}$ Our interest stems primarily from encouraging anti-angiogenic activities, in which hypoestoxide was shown to inhibit the growth of a number of human and murine tumor cell lines in vivo. In terms of angiogenesis, hypoestoxide inhibited vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (BFGF). Hypoestoxide is a bicyclo[9.3.1]pentadecane diterpenoid containing a rigid "inside-outside" ring system decorated with an exocyclic enone, two epoxides and an acetate moiety. This rare ring system has also been described for the verticillanes, ${ }^{5}$ of which verticillol (1.2) ${ }^{6}$ is the most well known. It is tempting to propose that hypoestoxide, as a more oxygenated variant of verticillol, is formed from the same common cationic precursor (1.4) as both verticillol ${ }^{7}$ and taxol (1.3), ${ }^{8}$ which in turn originates from consecutive cyclizations of geranyl-geranyl pyrophosphate. In the case of verticillol, the cation (1.4) is trapped with water, while for taxol and hypoestoxide it undergoes endocyclic and exocyclic elimination followed by oxygenation and cyclization. As part of our efforts to evaluate the molecular mechanisms ${ }^{9}$ of promising natural product anticancer agents, we have focused our investigations on hypoestoxide and the verticillanes.

Scheme 1.1. Proposed Biosynthetic Origin of Hypoestoxide and Verticillol

1.2 Other Relevant Synthetic Work

Although no other synthetic efforts toward hypoestoxide have been published to date, work has been done toward verticillol and verticillene (dehydrated verticillol) and these efforts will be summarized below. Despite their complex structure and promising biological activity a surprisingly small number of accounts have been published in this area to date.

The first synthetic work came in 1981 from the lab of Tadahiro Kato (Scheme 1.2). ${ }^{10}$ The first key step in the synthesis involves a bio-inspired carbocation cascade triggered by the addition of SnCl_{4} to form the six-membered ring and bring together all of the carbons of the verticillene core (1.7). Their plan to assemble the macrocycle was to deprotonate α to the sulfone in order to displace the allylic bromide to access the core. Unfortunately under the conditions of the reaction, the allylic bromide isomerized from E to Z prior to being displaced, affording only the Z -olefin in the newly formed macrocycle 1.9 in rather low yield.

Scheme 1.2. Kato's First Synthetic Efforts Toward Verticillene

The second paper detailing work toward verticillene was published in 1990 by the Pattenden group (Scheme 1.3). ${ }^{11}$ This synthesis uses Stork-Danheiser chemistry to attach the diene chain needed for the macrocycle (1.11). The final carbon of the macrocycle is then installed by formylating the silyl enol ether followed by Grignard addition and dehydration to afford enal 1.13. A selective allylic oxidation with selenium and subsequent manganese dioxide oxidation gave the bis-aldehyde $\mathbf{1 . 1 5}$ needed to faciliate macrocylization. The aldehydes were reductively coupled with titanium trichloride and zinc copper couple to give the macrocycle. Verticillene was formed by 1,4-reduction of the resulting tetraene with sodium and liquid ammonia.

Scheme 1.3. Pattenden's Synthesis of Verticillene

The third paper in this area was again the work of Kato and used much of the same chemistry as before (Scheme 1.4). ${ }^{12}$ An analogous cationic cyclization was carried out as before using allylic chloride 1.18 with the hope of eliminating the troublesome allylic scrambling that occurred in their first paper during the cyclization step. With the chloride in place, the macrocyclization proceeded smoothly without any mention of olefin scrambling. With this success behind them, they installed the required tertiary alcohol by lactonization and reduction to diol 1.21 , albeit with the wrong tertiary alcohol stereochemistry. Their synthesis of epiverticillol was completed by oxidizing the primary alcohol and deformylating using Wilkinson's catalyst.

Scheme 1.4. Kato's Synthesis of Epiverticillol

1.3 Our Synthetic Efforts ${ }^{13}$

Several factors were considered before beginning our synthetic efforts. First, with a trans-[9.3.1] bicyclic framework two different atropisomers are possible for hypoestoxide (Scheme 1.5). We were encouraged by calculations indicating that hypoestoxide was $4.1 \mathrm{kcal} / \mathrm{mol}(\mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$) more stable than the atropisomer (1.22). Therefore, we imagined that a macrocyclization would preferentially form the natural atropisomer. In addition, the barrier to interconvert hypoestoxide and its atropisomer was estimated to be $65 \mathrm{kcal} / \mathrm{mol}$, suggesting that atropisomer interconversion would not be possible.

Scheme 1.5. Possible Atropisomers of Hypoestoxide

Taking these observations into consideration, diene $\mathbf{1 . 2 3}$ seemed like an ideal target, and we decided to construct it using a conformationally controlled ring closing metathesis (Scheme 1.6). This diene provided four different ring closing metathesis options. The C5-C6 and C9-C10 olefins would originate from a standard monosubstituted carbenoid or alternatively from a $d i$-substituted carbenoid, such as $\mathbf{1 . 2 4}$, which would be accessed using relay ring closing metathesis (RRCM). ${ }^{14}$ Our analysis suggested that in closing the macrocycle it would be advantageous to bring together a more substituted carbene with a less hindered terminus to minimize competing dimerization pathways. We further postulated that ruthenium carbene 1.24 (C5-C6 disconnection) would be the better candidate for macrocyclization, since the equivalent C 10 -di-substituted carbene would be more sterically hindered and suffer from unfavorable interactions with the C12 hydroxy group. Concurrently, we proposed to rigidify the macrocyclization substrate in order to bring the two olefin termini closer together ${ }^{15}$ and ensure formation of the correct atropisomer. Ketone $\mathbf{1 . 2 5}$ would serve as the branch-point that would allow us at a late stage to evaluate several fused ring sizes. Cyclization precursor $\mathbf{1 . 2 5}$ would be assembled from three simple building blocks (1.26-1.28). Our endgame towards hypoestoxide would rely on substrate controlled bis-epoxidation.

1.1

1.23

1.24

1.25

1.26

1.28

Scheme 1.6. Retrosynthesis of Hypoestoxide

Our synthetic efforts commenced with a Grignard addition to methacrolein 1.29, followed by a Johnson-Claisen rearrangement ${ }^{16}$ to generate ethyl ester 1.30 (Scheme 1.7). This ester was reduced to the aldehyde with DIBAL-H, and another Grignard addition afforded allylic alcohol $\mathbf{1 . 3 1}$. We next utilized a [2,3]-rearrangement ${ }^{17}$ to stereoselectively install the second trisubstituted olefin. The hydroxyacid was exhaustively reduced and the resulting diol was cleaved with lead tetracetate to give aldehyde $\mathbf{1 . 2 8}$. The other key component, enone $\mathbf{1 . 3 2}$, was readily assembled by employing the Stork-Danheiser methodology. ${ }^{18}$ This enone was then subjected to a conjugate addition and in situ trapping to form the trimethylsilyl enol ether ${ }^{19}$ needed to couple with aldehyde 1.28. It was determined that the addition of $\mathrm{ZnCl}_{2}{ }^{20}$ was required to promote the desired aldol reaction to form tetraene 1.33 with the desired trans arrangement ${ }^{21}$ on the six-membered ring. This route efficiently assembled the versatile synthetic intermediate $\mathbf{1 . 3 3}$ in only 10 steps from methacrolein.

1.31

1. NaH ,

2. LTA

76\% (4 Steps)
1.28

Scheme 1.7. Synthesis of Metathesis Precursor

Encouraged by the rapid assembly of metathesis precursor 1.33, we decided to evaluate 5- and 7-membered ring tethers. Accordingly, we converted ketone $\mathbf{1 . 3 3}$ to an enol triflate and deprotected the silyl ether to give $\mathbf{1 . 3 4}$ (Scheme 1.8). The 5membered ring tether was accessed via carbonylation ${ }^{22}$ of $\mathbf{1 . 3 4}$ to give the lactone, however, this lactone and its reduced variants (1,4 and 1,2-reductions) failed to undergo ring closing metathesis. The 7-membered ring series was accessed by reducing the lactone to diol $\mathbf{1 . 3 5}$ and tethering the two hydroxyl groups with triphosgene to give carbonate $\mathbf{1 . 3 6}$. This carbonate turned out to be an ideal macrocyclization substrate. Optimized conditions using Grubbs second generation catalyst ${ }^{23}$ in refluxing toluene afforded bicyclic substrate 1.37 in excellent yield. Deprotection of 1.37 gave diol 1.38. Successful metathesis cyclizations took place using Grubbs 2nd generation catalyst. With a successful cyclization substrate in hand, we wondered if two steps could be eliminated from the synthetic sequence by
tethering the diol in situ using titanium additives. ${ }^{24}$ Gratifyingly, adding excess titanium isopropoxide prior to the metathesis catalyst formed triene $\mathbf{1 . 3 8}$ in equally high yield directly from diol $\mathbf{1 . 3 5}$.

Scheme 1.8. Tether-Assisted Ring Closing Metathesis

Extensive NMR analysis of $\mathbf{1 . 3 8}$ revealed a couple of additional problems with the structure. The ring closing metathesis not only gave the undesired Z-olefin, but had done so with the C12-bearing tether in an axial position instead of the more stable equatorial position thus forming the wrong atropisomer of the natural product. Although this unexpected result revealed a flaw in our planned facial bias, it did confirm our tethered-cyclization strategy. This metathesis product (1.38) was then bis-acetylated, and the two trisubstituted macrocyclic olefins were subjected to substrate controlled bis-epoxidation, which afforded $\mathbf{1 . 3 9}$ as the only product. Tsuji's reductive allylic transposition ${ }^{25}$ was used to form the desired exo-methylene moiety in
1.40. Allylic oxidation was achieved with selenium dioxide and the resulting alcohol was oxidized with Dess-Martin periodinane to enone 1.41. This nineteen step synthesis of an isomer of hypoestoxide highlights the efficiency of our synthetic assembly.

Scheme 1.9. Synthesis of Hypoestoxide Isomer

To complete a total synthesis of atrop-hypoestoxide we needed to invert both the C12 stereocenter and the C5-C6 olefin geometry. Toward that end, the primary alcohol group in metathesis product $\mathbf{1 . 3 8}$ (Scheme 1.10) was selectively protected and the C12 alcohol was converted to a ketone using the Ley oxidation. Substrate controlled reduction of the ketone gave the inverted diol $\mathbf{1 . 4 2}$ as a single product. ${ }^{26} \mathrm{We}$ then turned our attention to the more challenging task of inverting the C5-C6 trisubstituted olefin. We accomplished this by acylating the diol and dihydroxylating the more reactive C5-C6 olefin to give $\mathbf{1 . 4 3}$. The inversion was solved by forming diol 1.44 using a substrate controlled oxidation/reduction sequence. The hydroxyl groups of $\mathbf{1 . 4 4}$ could then be tied together to form a cyclic thiocarbonate, which when subjected to the Corey-Winter deoxygenation conditions ${ }^{27}$ afforded the desired E, E triene 1.45. Following bis-epoxidation of the macrocyclic diene moiety, palladium
mediated allylic transposition was again successfully employed to form the desired exo-methylene group. Unfortunately, 1.46 could not be oxidized to atrophypoestoxide.

Scheme 1.10. Synthesis of Desoxy atrop-Hypoestoxide

In an effort to further test the final allylic oxidation protocol, diol $\mathbf{1 . 4 2}$ was again bis-acetylated and then subjected to mCPBA which selectively epoxidized the more reactive Z -double bond to give $\mathbf{1 . 4 7}$. The remaining macrocyclic double bond was then dihydroxylated and the secondary alcohol was selectively converted to the hydroxy mesylate 1.48. Treatment with DBU afforded the cis-epoxide 1.49. Palladium catalyzed transposition of the allylic acetate in $\mathbf{1 . 4 9}$ gave the desired exocyclic olefin to test the allylic oxidation. This double cis-epoxide isomer of atrophypoestoxide smoothly afforded another isomer of hypoestoxide (1.50) when treated with pentafluorophenylselenic acid.

Scheme 1.11. Synthesis of Another Isomer of atrop-Hypoestoxide

We decided to explore an additional tethering strategy to achieve an even more expedient synthetic assembly of both hypoestoxide and verticillol. We were interested in learning how a six-membered ring tether would affect the selectivity of the ring closing metathesis (Scheme 1.12). Grignard addition to ketone $\mathbf{1 . 3 3}$ afforded a single diol diastereomer, which could be readily tethered as a cyclic carbonate (1.51). When treated with Grubbs second generation catalyst $\mathbf{1 . 5 1}$ formed a single macrocyclic isomer which, upon deprotection, afforded diol 1.52. NMR analysis of $\mathbf{1 . 5 2}$ indicated that the undesired Z-olefin and incorrect atropisomer were again formed as the only bicyclic product in the ring closing metathesis reaction. This diol could, however, be converted to an isomer of verticillol (1.53) by selective mesylation of the secondary alcohol and reductive removal of the resulting sulfonate ester. This synthetic route to an isomer of verticillol constituted only sixteen synthetic steps from methacrolein.

Scheme 1.12. Synthesis of a Verticillol Isomer

In summary, we have reported the first synthetic efforts towards the natural product hypoestoxide. An efficient flexible synthetic route that also provides access to the verticillane family of natural products has been devised. This synthetic roadmap has been utilized to accomplish a synthesis of 18-desoxy-atrop-hypoestoxide as well as isomers of both hypoestoxide and verticillol.

REFERENCES

(1) Adesomoju, A. A.; Okogun, J. I.; Cava, M. P.; Carroll, P. J. Heterocycles, 1983, 20, 2125-2128.
(2) a) Ojo-Amaize, E. A.; Nchekwube, E. J.; Cottam, H. B.; Bai, R.; VerdierPinard, P.; Kakkanaiah, V. A.; Varner, J. A.; Leoni, L.; Okogun, J. I.; Adesomoju, A. A.; Oyemade, O. A.; Hamel, E. Cancer Res., 2002, 62, 40074014. b) Ojo-Amaize, E. A.; Cottam, H. B.; Oyemade, O. A.; Okugon, J. I.; Nchekwube, E. J. World J. Gastroenterol., 2007, 13, 4586-4588.
(3) Ojo-Amaize, E. A.; Nchekwube, E. J.; Cottam, H. B.; Oyemade, O. A.; Adesomoju, A. A.; Okugon, J. I. Exp. Parasitol., 2007, 117, 218-221.
(4) Ojo-Amaize, E. A.; Kapahi, P.; Kakkanaiah, V. N.; Takahashi, T.; ShalomBarak, T.; Cottam, H. B.; Adesomoju, A. A.; Nchekwube, E. J.; Oyemade, O. A.; Karin, M.; Okogun, J. I. Cell. Immunol., 2001, 209, 149-157.
(5) a) Nagashima, F.; Tamada, A.; Fuji, N.; Asakawa, Y. Phytochemistry, 1997, 46, 1203-1208. b) Hernandez-Hernandez, J. D.; Roman-Marin, L. U.; Cerda-Garcia-Rojas, C. M.; Joseph-Nathan, P. J. Nat. Prod., 2005, 68, 1598-1602.
(6) a) Erdtman, H.; Norin, T.; Sumimoto, M.; Morrison, A. Tetrahedron Lett., 1964, 5, 3879-3886. b) Bengt, K.; Pilotti, A. M.; Soderholm, A. C.; Norin, T.; Sundin, S.; Sumimoto, M. Tetrahedron, 1978, 34, 2349-2354.
(7) Jin, Y.; Williams, D. C.; Croteau, R.; Coates, R. M. J. Am. Chem. Soc., 2005, 127, 7834-7842.
(8) a) Williams, D. C.; Carroll, B. J.; Jin, Q.; Rithner, C. D.; Lenger, S. R.; Floss, H. G.; Coates, R. G.; Williams, R. M.; Croteau, R. Chem. Biol., 2000, 7, 969-
977. b) Tokiwano, T.; Endo, T.; Tsukagoshi, T.; Goto, H.; Fukushi, E.; Oikawa, H. Org. Biomol. Chem., 2005, 3, 2713-2722.
a) Kupchan, S. M.; Fessler, D. C.; Eakin, M. A.; Giacobbe, T. Science, 1970, 168, 376-379. b) Dinkova-Kostova, A. T.; Massiah, M. A.; Bozak, R. E.; Hicks, R. J.; Talalay, P. Proc. Natl. Acad. Sci. USA, 2001, 98, 3404-3409.
c) Siedle, B.; Garcia-Pineres, A. J.; Murillo, R.; Schulte-Monting, J.; Castro, V.; Rungeler, P.; Klaas, C. A.; Da Costa, F. B.; Kisiel, W.; Merfert, I. J. Med. Chem., 2004, 47, 6042-6054.
(10) Kumagai, T.; Ise, F.; Uyehara, T.; Kato, T. Chem. Lett., 1981, 25-28.
(11) Begley, M. J.; Jackson, C. B.; Pattenden, G. Tetrahedron, 1990, 46, 49074924.
(12) Kato, T.; Hoshikawa, M.; Yaguchi, Y.; Izumi, K.; Uotsu, Y.; Sakai, K. Tetrahedron, 2002, 58, 9213-9222.
(13) McGrath, N. A.; Lee, C. A.; Araki, H.; Brichacek, M.; Njardarson, J. T. Angew. Chem. Int. Ed., 2008, 47, 9450-9453

Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem. Soc., 2004, 126, 10210-10211.
(15) a) O'Leary, D. J.; Miller, S. J.; Grubbs, R. H. Tetrahedron Lett., 1998, 39, 1689-1690. b) Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. Org. Lett., 2000, 2, 3209-3212. c) Sprott, K. T.; Hanson, P. R. J. Org. Chem., 2000, 65, 7913-7918. d) Evans, P. A.; Murthy, V. S. J. Org. Chem., 1998, 63, 67686769. e) Sprott, K. T.; McReynolds, M. D.; Hanson, P. R. Org. Lett., 2001, 3, 3939-3942.
(16) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T. T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc., 1970, 92, 741-743.
(17) Nakai, T.; Mikami, K.; Taya, S.; Kimura, Y.; Mimura, T. Tetrahedron Lett., 1981, 22, 69-72.
(18) a) Stork, G.; Danheiser, R. L. J. Org. Chem., 1973, 38, 1775-1776. b) Trost, B. M.; Bream, R. N.; Xu, J. Angew. Chem. Int. Ed., 2006, 45, 3109-3112.
c) Evarts, J.; Torres, E.; Fuchs, P. L. J. Am. Chem. Soc., 2002, 124, 1109311101. d) Aoki, K.; Nakajima, M.; Tomioka, K.; Koga, K. Chem. Pharm. Bull., 1993, 41, 994-996.
(19) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc., 1968, 90, 4462-4464.
(20) House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmsted, H. D. J. Am. Chem. Soc., 1973, 95, 3310-3324.
(21) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J. J. Am. Chem. Soc., 2005, 127, 14200-14201.
(22) Bell, R. P. L.; Wijnberg, J. B. P. A.; de Groot, A. J. Org. Chem., 2001, 66, 2350-2357.
(23) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett., 1999, 1, 953-956.
(24) a) Fürstner, A.; Langemann, K. J. Am. Chem. Soc., 1997, 119, 9130-9136.
b) Baba, Y.; Saha, G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.;

Takemoto, Y. J. Org. Chem., 2001, 66, 81-88. c) Fürstner, A. Angew. Chem. Int. Ed., 2000, 39, 3012-3043.
(25) Tsuji, J.; Minami, I.; Shimizu, I. Synthesis, 1986, 623-627.
(26) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis, 1994, 639666.
(27) Corey, E. J.; Winter, R. A. E. J. Am. Chem. Soc., 1963, 85, 2677-2678.

Chapter 2

Platensimycin

2.1 Background and Significance

Recently, researchers at Merck disclosed a new natural product, platensimycin (2.1, Figure 2.1), ${ }^{1}$ which was obtained by screening a large collection of South African soil samples using a novel antibiotic assay. Characterization revealed a unique compact core connected to an aminohydroxy salicylic acid group via a propionate tether. Platensimycin has a novel mechanism of action, inhibiting the β-ketoacyl(acyl carrier protein) synthase (FabF) in the bacterial fatty acid synthetic pathway. ${ }^{2}$ It was shown that the salicylic acid group present in platensimycin competes with the malonyl-acyl-carrier-protein for the malonyl binding site of FabF. Platensimycin is quite effective towards various gram-positive bacteria including multiresistant strains of staphylococci and enterococci. Due to its unique mechanism of action, no cross resistance to existing drugs have been reported to date. Several new members of this class have since been reported, ${ }^{3}$ differing only in functionalization of the carboxylate terminus. This attractive natural product target has also encouraged researchers to engineer strains to improve its production. ${ }^{4}$ Recently, several derivatives obtained by modifying platensimycin have been reported. ${ }^{5}$ Nicolaou has pursued a different approach, replacing the oxatetracyclic core with carbocyclic and adamantyl mimics, which were equipotent with the natural product. ${ }^{6}$ These results bode well for analog approaches utilizing diverted total synthetic strategies. ${ }^{7}$

Figure 2.1. Structures of Platensimycin and Platensic Acid

2.2 Other Relevant Synthetic Work

Despite a flurry of synthetic activity, ${ }^{8}$ only two groups have completed total syntheses of platensimycin (2.1) to date. All other reported efforts have focused on constructing the platensimycin core (2.3). To highlight the diversity of these synthetic approaches we have chosen to emphasize the final bond formed by each group to complete the polycyclic core of platensimycin (Figure 2.2). Altogether there have been fourteen unique approaches to this exciting molecule and each of these efforts is summarized below.

Figure 2.2. Synthetic Approaches to Complete the Platensimycin Core

The first total synthesis of platensimycin was published in 2006 by K. C. Nicolaou (Scheme 2.1). ${ }^{9}$ The first key step in the synthesis was a ruthenium-catalyzed cycloisomerization to generate the spirocyclic compound 2.5. The next ring was constructed using a samarium iodide mediated radical cyclization and the final ring was achieved through an acid-catalyzed etherification with trifluoroacetic acid. Having attained the tetracyclic core of platensimycin (2.3), the next task was to attach the aromatic sidechain. This was accomplished by using a HATU mediated amide coupling reaction between the carboxylic acid 2.9 and protected aniline 2.10. Then,
the first total synthesis of platensimycin was completed by straightforward protecting group removal.

Scheme 2.1. Nicolaou's Total Synthesis of Platensimycin

The Nicolaou group subsequently reported two unique enantioselective approaches (Scheme 2.2) to the platensimycin core. ${ }^{10}$ The first asymmetric approach mirrors that of their first paper and uses a cycloisomerization to install the spiro-ring system. Asymmetric induction was achieved by employing a rhodium-catalyzed cycloisomerization in the presence of (S)-BINAP to give 2.13 in greater than 95% ee. This route was completed as before, utilizing first a samarium iodide mediated cyclization followed by a trifluoroacetic acid catalyzed etherification to give the first enantioselective synthesis of the platensimycin core 2.3.

Another route described in the same paper uses a chiral auxiliary approach to assemble the platensimycin core in an asymmetric fashion. The asymmetry was achieved using Myers' asymmetric alkylation method ${ }^{11}$ with (S, S)-pseudoephedrine to bring together the aryl group and the amide auxiliary in 85% de. After cleaving the auxiliary and carrying out minor structural modifications, the key spiro system was constructed using a iodine-catalyzed cyclodearomatization reaction with an allyl silane as the required nucleophile to generate 2.17. This enantioenriched product was then carried forward using the previously described method (Scheme 2.1) to complete the first asymmetric total synthesis of (-)-platensimycin.

Scheme 2.2. Nicolaou's Asymmetric Syntheses of Platensimycin

Recently, the Snider group described a very concise route to the platensimycin core (Scheme 2.3). ${ }^{12}$ The synthesis begins with an intramolecular 5-exo-trig radical cyclization between a vinyl radical and an α, β-unsaturated ketone to give 2.19. After ketone reduction, the final ring was formed by an acid-catalyzed etherification
reaction forming 2.21. The formal synthesis was completed by carrying out a dehydration and subsequent allylic oxidation with selenium dioxide.

Scheme 2.3. Snider's Synthesis of Platensimycin

Nicolaou and coworkers followed up by publishing an alternate formal synthesis of racemic platensimycin (Scheme 2.4). ${ }^{13}$ The 6,6-fused ring system of 2.23 was accessed by using an intramolecular Stetter reaction and the subsequent ring was achieved through a 5 -exo-trig radical cyclization into the remaining α, β-unsaturated ketone to give 2.24. After ketone reduction, the final ring of the core was again accessed by using acid-catalyzed etherification. The ketone reduction unfortunately gave a 1:1 mixture of diastereomers that were separated and the undesired alcohol was re-oxidized and reduced to give more of the desired alcohol that was competent for the cyclization. The thioketal of $\mathbf{2 . 2 6}$ was then oxidatively removed with Dess-Martin periodinane to complete the formal synthesis of platensimycin.

Scheme 2.4. Nicolaou's Stetter/Radical Based Synthesis of Platensimycin

The research group of Hisashi Yamamoto was the next to produce a synthesis of platensimycin (Scheme 2.5). ${ }^{14}$ Lactone 2.28 was prepared using a Baeyer-Villiger oxidation of ketone 2.27. Under the reaction conditions the initially formed lactone isomerized to form the more stable fused lactone 2.28. Functionalizing both five membered rings led to the α, β-unsaturated ketone $\mathbf{2 . 2 9}$, which was used to test the key annulation. The reaction was accomplished in one pot using L-proline as a catalyst to mediate the initial intramolecular Michael addition, followed by sodium hydroxide treatment to facilitate the subsequent aldol condensation.

Scheme 2.5. Yamamoto's Synthesis of Platensimycin

Mulzer et al. also reported an approach to platensimycin (Scheme 2.6). ${ }^{15}$ The synthesis of the diketone 2.31, previously reported by Mander, ${ }^{16}$ involves the cyclodearomatization of a diazo-ketone generated by addition of TMS-diazomethane to acid chloride $\mathbf{2 . 3 0}$. The regio- and stereoselective addition of methylmagnesium iodide to $\mathbf{2 . 3 1}$ followed by stereoselective allylic bromination provided 2.32, which subsequently cyclized under basic conditions to complete the core of platensimycin. The core was then exhaustively hydrogenated and re-oxidized to complete the formal synthesis.

Scheme 2.6. Mulzer's Synthesis of Platensimycin

The next approach came from the lab of Corey and coworkers (Scheme 2.7). ${ }^{17}$ The first step of the synthesis was an oxidative acetalization of $\mathbf{2 . 3 4}$ with ethylene glycol to give the α, β-unsaturated ketone $\mathbf{2 . 3 5}$, which was then subjected to an enantioselective conjugate addition to introduce the asymmetry in the synthesis. The synthesis later relied on an intramolecular bromoetherification reaction of MEM-ether $\mathbf{2 . 3 7}$ to install the tetrahydrofuran moiety and the bromine atom necessary to complete the core. The next step was to remove the silyl protecting group thereby allowing for the desired alkylative dearomatization to give the platensimycin core.

Scheme 2.7. Corey's Synthesis of Platensimycin

Another route based on chiral pool reactants again came from the Nicolaou group (Scheme 2.8). ${ }^{18}$ The synthesis started from (R)-(-) carvone 2.39, which was treated with Grignard reagent $\mathbf{2 . 4 0}$ followed by oxidation of the resulting tertiary alcohol to give the desired enone 2.41. This was followed by regioselective oxymercuration of the disubstituted olefin. When the resulting organo-mercury species was reduced with sodium borohydride, the resulting primary radical underwent 1,4 -addition to the enone generating the [3.2.1] bicyclic system 2.42. Other key steps in the synthesis included a samarium iodide mediated 6-endo radical cyclization and an acid-catalyzed etherification to complete the core of platensimycin.

Scheme 2.8. Nicolaou's Chiral Pool Based Synthesis of Platensimycin

The next paper published was from the research group of Eun Lee (Scheme 2.9). ${ }^{19}$ The key step in the synthesis involved a carbonyl ylide cycloaddition of $\mathbf{2 . 4 8}$ to generate all but one of the rings in the platensimycin core. The final step to complete the core was a high yielding aldol condensation under acidic conditions.

Scheme 2.9. Eun Lee's Synthesis of Platensimycin

A synthetic approach by Matsuo and coworkers is summarized in Scheme 2.10. ${ }^{20}$ The first key step in the sequence was a palladium catalyzed cyclization of 2.51 to form dihydropyran 2.52. The ketone group in $\mathbf{2 . 5 2}$ was then converted to the vinyl triflate and reduced to 2.53. Selective addition of thiophenol to the enol ether in $\mathbf{2 . 5 3}$ generated the monothioketal 2.54, which was poised to form the final C-C bond of the core. A transannular radical cyclization was realized using standard conditions to afford $\mathbf{2 . 3}$ after deacetylization.

Scheme 2.10. Matsuo's Synthesis of Platensimycin

An approach by Daesung Lee (Scheme 2.11) ${ }^{21}$ was also based on (S)-carvone 2.55, which was reduced and cyclized to give 2.56. Allylic oxidation followed by a 5 -exo radical cyclization provided 2.57. After extending the aldehyde chain to ketone $\mathbf{2 . 5 8}$, they converted the ketone to the alkylidene carbene which underwent the desired $\mathrm{C}-\mathrm{H}$ insertion to form 2.59. Subsequent dihydroxylation to $\mathbf{2 . 6 0}$ and diol cleavage afforded the ketoaldehyde previously reported by Eun Lee, which underwent a base catalyzed aldol condensation to give the core of platensimycin.

Scheme 2.11. Daesung Lee's Synthesis of Platensimycin

The next synthesis of platensimycin was achieved by the research group of Arun Ghosh, starting from carvone (Scheme 2.12) ${ }^{22}$. A key step was a Baeyer-Villiger oxidation of $\mathbf{2 . 6 1}$ to give the seven membered ring lactone $\mathbf{2 . 6 2}$, which subsequently isomerized to the 5,5 -fused lactone 2.63. Each ring of the fused bicyclic system was then elaborated to produce triene $\mathbf{2 . 6 4}$ necessary for the crucial intramolecular DielsAlder reaction. Standard conditions failed to provide the Diels-Alder adduct, but by increasing the temperature and pressure $\left(270^{\circ} \mathrm{C}\right.$, sealed tube) a reasonable yield of cycloaddition product $\mathbf{2 . 6 5}$ could be attained. Ghosh et al. went on to elaborate their system to complete a total synthesis of (-)-platensimycin.

Scheme 2.12. Ghosh's Synthesis of Platensimycin

Another report from the Nicolaou lab highlighted further development of the cycloisomerization reaction described in two of their previous routes (Scheme 2.1, Scheme 2.2) to platensimycin. ${ }^{23}$ This involved the use of a terminal alkyne in the cycloisomerization reaction to form 2.7 (Scheme 2.13). Enyne precursor 2.68, was assembled using Stork-Danheiser chemistry and the core was completed in a similar fashion to their previous routes.

Scheme 2.13. Nicolaou's Fifth Synthesis of Platensimycin

A platensimycin approach by Wang and coworkers (Scheme 2.14) ${ }^{24}$ utilized an intramolecular [3+2] cycloaddition of a cyclopropane 1,1-diester with a ketone to assemble the oxatropane via ylide 2.70. Decarboxylation of 2.71 converged with
intermediate $\mathbf{2 . 7 2}$ from our synthesis to complete their formal synthesis of platensimycin.

Scheme 2.14. Wang‘s Synthesis of Platensimycin

2.3 Our Synthetic Efforts ${ }^{25}$

We envisioned a concise retrosynthetic plan for the total synthesis of platensimycin (Scheme 2.15). Platensic acid (2.2) would serve as our immediate target as it represented a natural branch point for accessing all the other members of this natural product family. We proposed that $\mathbf{2 . 2}$ could be made from $\mathbf{2 . 7 3}$ via a retro-Michael ring opening reaction followed by hydrolysis of the resulting ester. Radical cyclization of bromide $\mathbf{2 . 7 4}$ would be expected to afford the platensimycin carbocyclic core (2.73). Oxidative dearomatization of 2.76 and in situ trapping of the ortho-quinone mono-ketal (2.75) with methyl acrylate was expected to provide 2.74 as the only cycloadduct. In this one remarkable transformation, the aromatic core would be unraveled and primed for the following cyclization step. At the same time, the quaternary center bearing the sidechain with the desired oxidation state would be
installed via a substrate and regiocontrolled Diels-Alder cycloaddition. Oxatropane 2.76 would originate from vinyl oxirane 2.77 using our newly described copper catalyzed ring expansion. ${ }^{26}$ Epoxidation of the diene obtained from enone $\mathbf{2 . 7 8}$ could also serve as the asymmetric entry point for this synthesis, which in turn would be assembled in two steps from $\mathbf{2 . 7 9}{ }^{27}$ and $\mathbf{2 . 8 0}$ using a Heck coupling followed by an intramolecular aldol condensation. Although this design allows direct access to the platensimycin core including the propionic acid and methyl group, we decided to initially take a more conservative approach.

Scheme 2.15. Retrosynthetic Analysis of Platensimycin

Our synthetic efforts commenced with vanillin, which was regioselectively brominated and protected to $\mathbf{2 . 8 1}$ following known procedures (Scheme 2.16). ${ }^{28}$ Although 2.81 lacked the requisite methyl group in 2.79, its availability made it a nice model system. This substrate was subjected to Heck coupling conditions in the presence of allylic alcohol $\mathbf{2 . 8 0}$, which furnished keto-aldehyde $\mathbf{2 . 8 2} .{ }^{29}$ The methyl branching was key to the rapid assembly of the fused ring system (2.83), ensuring that
under the thermodynamic conditions employed, only the seven membered ring enone could form. Deprotonation ${ }^{30}$ of $\mathbf{2 . 8 3}$ and trapping of the resulting enolate with N phenyltriflamide afforded triflate $\mathbf{2 . 8 4}$. Palladium mediated carbonylation afforded dienoate $\mathbf{2 . 8 5}$ in excellent yield. ${ }^{31}$ Regioselective epoxidation was accomplished using the highly reactive trityl hydroperoxide, ${ }^{32}$ and our new copper catalyzed ring expansion protocol formed oxatropane $\mathbf{2 . 8 7}$.

Scheme 2.16. Synthesis of the Functionalized Aryl Fused Oxatropane

Ester 2.87 (Scheme 2.17) underwent stereoselective reduction using lithium triethyl borohydride to form alcohol $\mathbf{2 . 8 8}$, which formed bromide $\mathbf{2 . 8 9}$ using carbon tetrabromide and triphenylphosphine. After hydrogenolysis of the benzyl ether oxidation of 2.90 using iodobenzene diacetate (IBDA) afforded dimethyl ketal 2.91 which underwent a facile Diels-Alder dimerization. This process was slow enough however to test the proposed cyclization. Unfortunately, all efforts using either radical or anionic conditions did not form the desired core, instead giving only the product of
bromide reduction and no $\mathrm{C}-\mathrm{C}$ bond formation. Regardless, diene 2.91 could be trapped in-situ after oxidative dearomatization with methyl acrylate to give the desired cycloadduct 2.92. Our calculations had indicated that the structure of the new six membered ring would bring the radical accepting olefin in closer proximity with the primary radical compared to 2.91 and therefore make the cyclization more likely. Unfortunately all attempts to form 2.93 were unsuccessful, again giving only the product of bromine atom abstraction and subsequent radical quenching.

Scheme 2.17. Oxidative Dearomatization/Cyclization Attempts

We decided to evaluate a slightly different substrate to determine whether our proposed C-C cyclization strategy to form the platensimycin core was feasible. To this end oxatropane 2.87 was converted to 2.94 by alkene reduction and hydrogenolysis of the benzyl protecting group. Deoxygenation was then accomplished by forming aryl triflate $\mathbf{2 . 9 5}$ followed by reductive cleavage using palladium and formic acid to give 2.72. A mild phenolic silylation of the remaining
aryl methyl ether with triethylsilane and tris(pentafluorophenyl)borane furnished TESprotected phenol 2.96. ${ }^{33}$ The ester was reduced with DIBAL-H to give primary alcohol 2.97, which was converted to the tosylate $\mathbf{2 . 9 8}$. When this cyclization precursor was heated with tetrabutylammonium fluoride (TBAF) it rapidly underwent cyclization in excellent yield to form the platensimycin core (2.33). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 . 3 3}$ were identical to those previously reported, thus completing our formal synthesis of platensimycin.

Scheme 2.18. Intramolecular Alkylative Dearomatization

This success inspired us to improve the synthetic approach using brominated anisaldehyde 2.99 (Scheme 2.19). This route would circumvent with the late stage deoxygenation necessary in Scheme 2.18. Commercially available bromide $\mathbf{2 . 9 9}$ was converted to $\mathbf{2 . 1 0 1}$ using Molander's new trifluoroborate cross-coupling strategy. ${ }^{34}$ Ketoaldehyde $\mathbf{2 . 1 0 1}$ cleanly underwent the analogous condensation, triflate formation, and carbonylation using the previously optimized conditions to give $\mathbf{2 . 1 0 3}$. Nucleophilic epoxidation with trityl hydroperoxide afforded vinyl oxirane 2.104,
which subsequently underwent ring expansion to oxatropane $\mathbf{2 . 1 0 5}$ when subjected to our $\mathrm{Cu}(\mathrm{hfacac})_{2}$ conditions. Substrate controlled reduction afforded primary alcohol 2.106 which was converted to the tosylate and again hydrosilated to give TESprotected phenol 2.98. The platensimycin core (2.33) was again accessed by alkylative dearomatization, this time completing the formal synthesis in only ten steps from commercially available precursor $\mathbf{2 . 9 9}$.

Scheme 2.19. Efficient Synthesis of the Platensimycin Core

In summary, we have developed a very efficient route to the compact platensimycin core. Our architectural assembly relied on the use of a new copper catalyzed oxirane ring expansion in combination with an alkylative dearomatization to complete the core. Other notable features of this synthetic approach include an underutilized phenol ether deprotection, nucleophilic enoate epoxidation and a mild introduction of a substituted alkyl ketone using a trifluoroborate cross coupling.

REFERENCES

(1) a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature, 2006, 441, 358-361. b) Singh, S. B.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K. B.; Zhang, C.; Zink, D. L.; Tsou, N. N.; Ball, R. G.; Basilio, A.; Genilloud, O.; Diez, M. T.; Vicente, F.; Pelaez, F.; Young, K.; Wang, J. J. Am. Chem. Soc., 2006, 128, 11916-11920. c) Häbich, D.; von Nussbaum, F. ChemMedChem, 2006, 1, 951-954. d) Herath, K. B.; Attygalle, A. B.; Singh, S. B. J. Am. Chem. Soc., 2007, 129, 15422-15423.
(2) a) Zhang, Y. M.; White, S. W.; Rock, C. O. J. Biol. Chem., 2006, 281, 1754117544. b) Young, K.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K.; Zhang, C.; Kodali, S.; Galgoci, A.; Painter, R.; Brown-Driver, B.; Yamamoto, R.; Silver, L. L.; Zheng, Y.; Ventura, J. I.; Sigmund, J.; Ha, S.; Basilo, A.; Vicente, F.; Tormo, J. R.; Pelaez, F.; Youngman, P.; Cully, D.; Barret, J. F.; Schmatz, D.; Singh, S. B.; Wang, J. Antimicrob. Agents Chemother., 2006, 50, 519-526. c) For a review on antibiotics including platensimycin, see: Nicolaou, K. C.; Chen, J. S.; Edmonds, D. J.; Estrada, A. A. Angew. Chem. Int. Ed., 2009, 48, 660-719.
(3) a) Herath, K. B.; Zhang, C.; Jayasuriya, H.; Ondeyka, J. G.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B. Org. Lett., 2008, 10, 1699-1702. b) Jayasuriya, H.; Herath, K. B.; Ondeyka, J. G.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B. Tetrahedron Lett., 2008, 49, 3648-3651. c) Zhang, C.; Ondeyka, J.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B. Chem. Commun., 2008, 5034-5036.
(4) Smanski, M. J.; Peterson, R. M.; Rajski, S. R.; Shen, B. Antimicrob. Agents Chemother., 2009, 53, 1299-1304.
a) Singh, S. B.; Herath, K. B.; Wang, J.; Tsou, N.; Ball, R. G. Tetrahedron Lett., 2007, 48, 5429-5433. b) Krauss, J.; Knorr, V.; Manhardt, V.; Scheffles, S.; Bracher, F. Arch. Pharm. Chem. Life. Sci., 2008, 341, 386-392. c) Shen, H. C.; Ding, F.-X.; Singh, S. B.; Parthasarathy, G.; Soisson, S. M.; Ha, S. N.; Chen, X.; Kodali, S.; Wang, J.; Dorso, K.; Tata, J. R.; Hammond, M. L.; MacCoss, M.; Colletti, S. L. Bioorg. Med. Chem. Lett., 2009, 19, 1623-1627.
(6) a) Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J. Angew. Chem. Int. Ed., 2007, 46, 4712-4714. b) Nicolaou, K. C.; Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J. Am. Chem. Soc., 2007, 129, 14850-14851. c) Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am.Chem. Soc., 2008, 130, 13110-13119. d) Yeung, Y.-Y.; Corey, E. J. Org. Lett., 2008, 10, 3877-3878. e) Wang, J.; Lee, V.; Sintim, H. O. Chem. Eur. J., 2009, 15, 2747-2750.
(7) Njardarson, J. T.; Gaul, G.; Shan, D.; Huang, X.-Y.; Danishefsky, S. J. J. Am. Chem. Soc., 2004, 126, 1038-1040.
(8) The following are reviews published summarizing the synthetic approaches: a) Tiefenbacher, K.; Mulzer, J. Angew. Chem. Int. Ed., 2008, 47, 2548-2555.
b) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc., 2009, 131, 16905-16918. c) Palanichamy, K.; Kaliappan, K. P. Chem. Asian J. 2010, 5, 668-703.
(9) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem. Int. Ed., 2006, 45, 7086-7090.
(10) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem. Int. Ed., 2007, 46, 3942-3945.
(11) a) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. W. J. Am. Chem. Soc., 1997, 119, 656-673. b) Myers, A. G.; Gleason, J. L.; Yoon, T. J. Am. Chem. Soc., 1995, 117, 8488-8489. c) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc., 1997, 119, 6496-6511.
(12) Zou, Y.; Chen, C.-H.; Taylor, C. D.; Foxman, B. M.; Snider, B. B. Org. Lett., 2007, 9, 1825-1828.
(13) Nicolaou, K. C.; Tang, Y.; Wang, J. Chem. Commun., 2007, 1922-1923.
(14) Li, P.; Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc., 2007, 129, 953-954.
(15) Tiefenbacher, K.; Mulzer, J. Angew. Chem. Int. Ed., 2007, 46, 8074-8075.
(16) Beames, D. J.; Klose, T. R.; Mander, L. N. Aust. J. Chem., 1974, 27, 12691275.
(17) Lalic, G.; Corey, E. J. Org. Lett., 2007, 9, 4921-4923.
(18) Nicolaou, K. C.; Pappo, D.; Tsang, K. Y.; Gibe, R.; Chen, D. Y.-K. Angew. Chem. Int. Ed., 2008, 47, 944-946.
(19) Kim, C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem. Int. Ed., 2008, 47, 4009-4011.
(20) Matsuo, J.-I.; Takeuchi, K.; Ishhibashi, H. Org. Lett., 2008, 10, 4049-4052.
(21) Yun, S. Y.; Zheng, J.-C.; Lee, D. J. Am. Chem. Soc., 2009, 131, 84138415.
(22) a) Ghosh, A. K.; Xi, K. Org. Lett., 2007, 9, 4013-4016. b) Ghosh, A. K.; Xi, K. J. Org. Chem., 2009, 74, 1163-1170.
(23) Nicolaou, K. C.; Lee, A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem. Int. Ed., 2009, 48, 6293-6295.
(24) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem. Int. Ed., 2010, 49, 1-5.
(25) McGrath, N. A.; Bartlett, E. S.; Sittihan, S.; Njardarson, J. T. Angew. Chem. Int. Ed., 2009, 48, 8543-8546.
(26) Batory, L. A.; McInnis, C. E.; Njardarson, J. T. J. Am. Chem. Soc., 2006, 128, 16054-16055.
(27) Cook, S. P.; Danishefsky, S. J. Org. Lett., 2006, 8, 5693-5695.
(28) a) Kametani, T.; Terui, T.; Ogino, T.; Fukumoto, K. J. Chem. Soc. C., 1969, 874-878. b) Martin, v. P. Helv. Chim. Acta, 1989, 72, 1554-1582.
(29) Sundar, N.; Bhat, S. V. Synth. Commun., 1998, 28, 2311-2316.
(30) Aujard, I.; Rome, D.; Arzel, E.; Johansson, M.; de Vos, D.; Sterner, O. Bioorg. Med. Chem. Lett., 2005, 13, 6145-6150.
(31) Nagamitsu, T.; Sunazuka, T.; Obata, R.; Tomoda, H.; Tanaka, H.; Harigaya, Y.; Omura, S.; Smith III, A. B. J. Org. Chem., 1995, 60, 8126-8127.
(32) Li, C.; Pace, E. A.; Liang, M.-C.; Lobkovsky, E.; Gilmore, T.; Porco Jr., J. A. J. Am. Chem. Soc., 2001, 123, 11308-11309.
(33) Gevorgyan, V.; Liu, J.-X.; Rubin, M.; Benson, S.; Yamamoto, Y. Tetrahedron Lett., 1999, 40, 8919-8922.
(34) Molander, G. A.; Petrillo, D. E. Org. Lett., 2008, 10, 1795-1798.

Chapter 3

Guttiferone G

3.1 Background and Significance

In recent years a number of bridged bicyclic polyprenylated acylphloroglucinol natural products have been reported. ${ }^{1}$ The most famous being hyperforin, which is one of the main chemical constituents of the commonly used natural remedy St . John's wort. Recently, hyperforin has also shown promise as an anticancer agent. ${ }^{2}$ We have established a research program focused on synthesizing and evaluating unique bridged bicyclic natural product anti-cancer agents. The bridged phloroglucinol family drew our attention early on, but the catalyst for launching a synthetic program towards their synthesis was a report detailing the sirtuin inhibitory activity of hyperforin and guttiferone G (Figure 3.1). ${ }^{3}$ The sirtuins are considered high value targets for developing new anticancer agents and gaining more insight into improving longevity. ${ }^{4}$ Not surprisingly, there has been great interest in finding small molecule inhibitors, which selectively block the function of any of the seven known enzymes of the sirtuin family (SIRT1-7). ${ }^{5}$

Figure 3.1. Guttiferone G and Hyperforin

Hyperforin and guttiferone G share many structural similiarities in addition to the common [3.3.1] bridged bicyclic trione core and neither natural product has been synthesized to date. ${ }^{6}$ In our minds the most attractive difference is the bisprenyl bridgehead substitution of guttiferone G, which means that the fully
substituted trione part of the molecule is symmetrical. This local symmetry opens the door for exciting synthetic designs and more importantly for late introduction of chirality. We chose to limit our efforts to compounds containing stereocenters at both C5 and C6, thus excluding a number of symmetrically substituted compounds containing the C5 gem-dimethyl substitution pattern. Eight guttiferones sharing a symmetrical [3.3.1] bridged bicyclic core have been reported in the last twenty years since the first was discovered (guttiferone A). ${ }^{7}$ The only structural difference between members of this family are the substitution of the two adjacent stereocenters (C5 and C6), the benzoyl group oxidation state and the absolute configuration of the desymmetrized core (Figure 3.2).

A closer look at the published data for these eight compounds revealed that although there are four possible arrangements for each C5/C6 substitution pattern, it seems nature has prefered to place the two large groups (geranyl and prenyl) trans to each other. Guttiferone A is the only member of this natural product class whose absolute configuration has been unambiguously established. ${ }^{8}$ The data suggests that guttiferone A and I belong to the same enantiomeric series ${ }^{9}$ and that the other six (guttiferones I, J, K, L, G and garcicowin B) belong to the opposite. ${ }^{10}$ The latter six structures are remarkably similar, differing only in the benzoyl group and whether there is a prenyl or geranyl group at the C6-position.

Although this natural product collection has never been tested as one, each member has been shown to exhibit anti-cancer activity ranging from general cytotoxicity ${ }^{11}$ to potential protease inhibitors, ${ }^{12}$ antiapoptotic ${ }^{13}$ or antiproliferative agents. In addition, several studies have been reported on their various biological functions beyond cancer. ${ }^{14}$ As stated above, we were most excited about the sirtuin inhibitory activity of guttiferone G and to learn how the other seven members of this family compare. Such a study would provide important SAR clues on the
relative importance of the C5, C6 or benzoyl substitutions on sirtuin inhibition.

$\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}, \mathbf{R}_{\mathbf{4}}$
$\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}$ $\mathrm{OH}, \mathrm{H}, \mathrm{H}, \mathrm{H}$ $\mathrm{OH}, \mathrm{OH}, \mathrm{H}, \mathrm{H}$ Guttiferone I (3.5) $\mathrm{OH}, \mathrm{OH}, \mathrm{OH}, \mathrm{H}$ $\mathrm{OH}, \mathrm{OH}, \mathrm{H}$, prenyl Guttiferone $\mathbf{G}(3.1)$ $\mathrm{OH}, \mathrm{H}, \mathrm{H}$, prenyl Garcicowin B (3.9)

Figure 3.2. Guttiferones Containing Locally Symmetrical Bicyclic Cores

3.2 Other Relevant Synthetic Work

A considerable amount of synthetic effort has gone into this class of natural products due to their biological activity. The first work was by the Nicolaou group which first published their efforts toward Garsubellin A in 1999 (Scheme 3.1). ${ }^{15}$ The first key step was a selenium-mediated cyclization to generate the bicyclic core (3.12). They concluded their efforts by carrying out a $[2+2]$ cycloaddition followed by Baeyer-Villager oxidation to assemble much of the garsubellin A core (3.16).

3.11

3.12

Garsubellin A (3.13)

Scheme 3.1. Nicolaou's Synthetic Efforts Toward Garsubellin A

The research group of Brian Stoltz published a paper in 2002 detailing their work in this area (Scheme 3.2). ${ }^{16}$ After the straight-forward synthesis of the silyl enol ether 3.17, treatment with malonyl chloride and base gave the desired bicyclic core. The additional allyl group was installed by allylating $\mathbf{3 . 1 8}$ followed by a Claisen rearrangement in which the resulting enol was capped with diazomethane.

Scheme 3.2. Stoltz's Synthetic Approach to [3.3.1] Bicyclic Core

The first total synthesis of a member of this family came from the group of Masakatsu Shibasaki ${ }^{17}$ in 2005 when they finished garsubellin A^{18} which was followed
up by an asymmetric total synthesis of ent-hyperforin (Scheme 3.3). ${ }^{19}$ The key step in assembling garsubellin A (3.21) was a ring closing metathesis, set up by an allylation/Claisen rearrangement similar to that used by Stoltz. In their asymmetric approach to ent-hyperforin, the initial three stereocenters were set in an asymmetric Diels-Alder reaction promoted by a cationic iron complex to give 3.24. The bicyclic core was made by an aldol addition/oxidation sequence to give the triketone $\mathbf{3 . 2 6}$ which was carried forward to the enantiomer of hyperforin.

Scheme 3.3. Shibasaki's Synthesis of Garsubellin A and ent-Hyperforin

Danishefsky first published a total synthesis of garsubellin A in $2006{ }^{20}$ and a year later completed nemorosone and clusianone (Scheme 3.4). ${ }^{21}$ The synthesis of garsubellin A relied on an iodocarbocyclization to produce the bicyclic core (3.29). Iodocarbocyclization was also used in their syntheses of nemorosone and clusianone and a common intermediate (3.32) was diverted to each of the natural products.

Scheme 3.4. Danishefsky's Total Synthesis of Three Members of This Family

A synthesis of clusianone was published by the Porco group in 2007 (Scheme 3.5). ${ }^{22}$ The bicyclic core was constructed using a double alkylative dearomatization of a 1,3,5-trihydroxybenzene (phloroglucinol) derivative 3.38 with a versatile "doubleMichael acceptor". In this reaction the initial Michael addition causes elimination of the acetate group to generate another Michael acceptor which subsequently reacts in an intramolecular fashion to assemble the bicyclic core. The synthesis was completed by converting the allyl group to a prenyl via metathesis and deprotection.

3.38

3.40

Scheme 3.5. Porco's Synthesis of Clusianone

Clusianone was recently synthesized by the Marazano group (Scheme 3.6). ${ }^{23}$ Their synthesis built off of the early success by Stoltz. They were able to use an adequately functionalized 6-membered ring (3.41) with malonyl chloride to give the bicyclic core 3.42. An acylation of $\mathbf{3 . 4 2}$ completed their synthesis of clusianone.

Scheme 3.6. Marazano's Synthesis of Clusianone

Simpkins ${ }^{24}$ published syntheses of clusianone and garsubellin A (Scheme 3.7). ${ }^{25}$ Malonyl chloride was used to assemble the bicyclic core of clusianone and a DMDO epoxidation followed by an intramolecular etherification generated the THF subunit (3.46) of garsubellin A. They completed their formal synthesis by using a protection/allylation/deprotection sequence.

Scheme 3.7. Simpkins's Synthesis of Clusianone and Garsubellin A

In addition to the approaches highlighted above, a number of groups have made noteworthy contributions to this area of research (Scheme 3.8). The first are from the Mehta group and involve either a lactone opening/aldol addition sequence ${ }^{26}(\mathbf{3 . 4 8})$ or a palladium catalyzed ring closure (3.50). ${ }^{27}$ Nakada's work involves the synthesis and in-situ opening of a methoxy cyclopropane to generate the core (3.53). ${ }^{28}$ Kraus uses a copper and manganese catalyzed cyclization to assemble the bicyclic core (3.55). ${ }^{29}$ The final example is a Michael-based approach from $\mathbf{3 . 5 6}$ to assemble the core by the research group of Couladouros. ${ }^{30}$

Scheme 3.8. Other Synthetic Contributions

3.3 Our Synthetic Efforts

Our retrosynthetic analysis (Scheme 3.9) relies on the late stage desymmetrization of $\mathbf{3 . 5 9}$, which could be diverted to all eight targeted natural products. This intermediate could be accessed via tandem 5-exo radical cyclizations (3.60) enabled by oxidative dearomatization of a para-hydroquinone, which is assembled from phenol $\mathbf{3 . 6 1}{ }^{31}$ and malonate derivative 3.62

Scheme 3.9. Guttiferone G Retrosynthesis

Our synthetic efforts commenced with known diallyl ether 3.61, which was readily accessible from 4-methoxy phenol. The free phenol was alkylated with diethyl 2-bromomalonate (3.62) to afford 3.63. The esters were converted into bromomethyl groups (3.64) in two steps. Selective deprotection of the methyl capped phenol using BCl_{3} and hypervalent iodine mediated oxidative deromatization yielded the desired dienone acetal radical cyclization precursor 3.65. Despite discouraging literature precedents, ${ }^{32}$ which suggested preferential
formation of $\mathbf{3 . 6 6}$ over $\mathbf{3 . 6 7}$ we decided to test the tandem 5-exo/5-exo radical cyclization thesis. Cyclization proceeded smoothly and selectively affording only acetal 3.66 and no evidence of bridged bicyclic acetal 3.67.

Scheme 3.10. Attempted Bis-Radical Cyclization

We postulated that placing a large group between the two radical sites would force the two radicals to same face, which is critical for accessing the bicyclic motif. This logic flows well with our synthetic design because an oxygenated phenacyl group resides in this exact position on the guttiferones. Diester $\mathbf{3 . 6 3}$ was alkylated (3.68) and reduced to diol $\mathbf{3 . 6 9}$ (Scheme 3.11). Bromination of the neopentyl alcohols was accomplished in two steps to give 3.70. Selective deprotection of the methyl ether was accomplished using $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in the presence of triethylsilane. ${ }^{33}$ Dearomatization proceeded as expected to produce acetal 3.72, which we were gratified to learn cyclized to form the desired symmetrical bridged
bicyclic product $\mathbf{3 . 7 3}$ as the only product. Cross metathesis of $\mathbf{3 . 7 3}$ with 2-methyl propene in the presence of Grubbs second generation catalyst gave 3.74. ${ }^{34}$ To test the facial selectivity in the alkylation of the bicyclic ketone 3.74, the enolate generated with LHMDS was trapped as the silyl ether. When this enol ether was treated with MeLi and MeI, the only product observed was determined to be that of methyl trapping on the exo face of the bicylic structure (3.75). This exclusive bias for alkylation on the exo-face lends promise to being able to access any member of this natural product class by changing the order of the alkylation sequence.

Scheme 3.11. Synthesis of the Bridged Bicyclic Core of the Guttiferones

In order to explain the profound reversal of selectivity in the cyclization of $\mathbf{3 . 6 5}$ and 3.72, we performed density functional theory calculations (UB3LYP 6$31 \mathrm{G}(\mathrm{d})$). The two possible transition states for the first radical cyclization were found and the more stable in each case $(\mathbf{3 . 7 8}, \mathbf{3 . 8 0})$ is depicted in Scheme 3.12. We see that in the case of $\mathrm{R}=\mathrm{H}$, the transition state having the methylene bromide on the exo face of the fused bicylic system is preferred by $2.8 \mathrm{kcal} / \mathrm{mol}$. Alternatively with $\mathrm{R}=\mathrm{Bn}$, steric interactions with the benzyl group force it to the less hindered exo face and the methylene bromide to the endo which is competent for further cyclization. These calculations are in complete agreement with experimental findings and explain the high selectivity attained in each case.

Scheme 3.12. Rationalization of Stereochemical Outcome

In order to assess our ability to carry out a late-stage desymmetrization to access either enantiomeric series of this natural product family, we employed chiral amide bases (Table 3.1). ${ }^{35}$ The asymmetry in the deprotonation was determined by trapping the enolate as a Mosher ester. Both enantiomers of the enolate were trapped to give
the corresponding diastereomeric Mosher esters. An increased selectivity was observed with LiCl being added prior to deprotonation.

Base	Additive	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Yield	dr
LHMDS	--	-78	85%	$1.1: 1$
RR-Amide	--	-78	87%	$3: 1$
RR-Amide	LiCl	$\mathbf{- 7 8}$	$\mathbf{8 3 \%}$	$\mathbf{1 0 : 1}$
SS-Amide	LiCl	-78	75%	$1: 6$
RR-Amide	LiCl	-100	72%	$3: 1$

Table 3.1. Asymmetric Desymmetrization of $\mathbf{3 . 7 4}$

In conclusion, we have developed an efficient approach to this exciting class of natural products that takes advantage of the inherent local symmetry present in the bicyclic structure. The complex core was accessed by employing a unique double radical cyclization of a p-quinone ketal derived from a simple aromatic precursor. The shape of the molecule controls the facial selectivity during the ketone alkylation and the use of a chiral amide base provides access to either enantiomeric series.

REFERENCES

(1) a) Ciochina, R.; Grossman, R. B. Chem. Rev., 2006, 106, 3963-3986. b) Singh, I. P.; Bharate, S. B. Nat. Prod. Rep., 2006, 23, 558-591. c) Acuna, U. M.; Jancovski, N.; Kennelly, E. J. Current Topics in Medicinal Chemistry, 2009, 9, 1560-1580.
(2) a) Dona, M.; Dell'Aica, I.; Pezzato, E.; Sartor, L.; Calabrese, F.; Barbera, M. D.; Donella-Deana, A.; Appendino, G.; Borsarini, A.; Caniato R.; Garbisa, S. Cancer Res., 2004, 64, 6225-6232. b) Martinez-Poveda, B.; Quesada, A. R.; Medina, M. A. Int. J. Cancer, 2005, 117, 775-780. c) Quiney, C.; Billard, C.; Salanoubat, C.; Fourneron, J. D.; Kolb, J. P. Leukemia, 2006, 20, 1519-1525. d) Rothley, M.; Schmid, A.; Thiele, W.; Schacht, V.; Plaumann, D.; Gartner, M.; Yektaoglu, A.; Bruyere, F.; Noel, A.; Giannis, A.; Sleeman, J. P. Int. J. Cancer, 2009, 125, 34-42.
(3) Gey, C.; Kyrylenko, L. H.; Nguyen, L.-H. D.; Buttner, A.; Pham, H. D.; Giannis, A. Angew. Chem. Int. Ed., 2007, 46, 5219-5222.
(4) a) Sanders, L. R.; Verdin, E. Oncogene, 2007, 26, 5489-5504. b) Brooks, C. L.; Gu, W. Nature Reviews Cancer, 2009, 9, 123-128.
(5) a) Milne, J. C.; Denu, J. M. Curr. Opin. Chem. Biol., 2008, 12, 11-17. b) Mai, A.; Cheng, D.; Bedford, M. T.; Valente, S.; Nebbioso, A.; Perrone, A.; Brosch, G.; Sbardella, G.; Bellis, F. D.; Miceli, M.; Altucci, L. J. Med. Chem., 2008, 51, 2279-2290. c) Alcain, F. J.; Villalba, J. M. Expert Opin. Ther. Patents, 2009, 19, 403-414.
(6) Shibasaki has recently reported a synthesis of ent-hyperforin: Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed., 2010, 49, 1103-1106.
(7) Gustafson, K. R.; Blunt, J. W.; Munroe, M. H. G.; Fuller, R. W.; McKee, T. C.; Cardellina, J. H.; McMahon, J. B.; Gragg, G. M.; Boyd, M. R. Tetrahedron, 1992, 48, 10093-10102.
(8) a) Lenta, B. N.; Nougoue, D. T.; Devkota, K. P.; Fokou, P. A.; Ngouela, S.; Tsamo, E.; Sewald, N. Acta Cryst., 2007, E63, 01282-01284. b) Martins, F. T.; Cruz, J. W.; Derogis, P. B. M. C.; Dos Santos, M. H.; Veloso, M. P.; Ellen, J.; Doriguetto, A. J. Braz. Chem. Soc., 2007, 18, 1515-1523.
(9) a) Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Guan, Z.; Borris, R. P.; Stijfhoorn, E.; Stevenson, D.; Wang, J.; Sharma, N.; MacNaul, K.; Menke, J. G.; Ali, A.; Schulman, M. J.; Singh, S. B. J. Nat. Prod., 2005, 68, 617-619. b) Hames, W.; Brajeul, S.; Mahuteau-Betzer, F.; Thoison, O.; Mons, S.; Delpech, B.; Hung, N. V.; Sevenet, T.; Marazano, C. J. Nat. Prod., 2006, 69, 774-780.
(10) a) Williams, R. B.; Hoch, J.; Glass, T. E.; Evans, R.; Miller, J. S.; Wisse, J. H.; Kingston, D. G. I. Planta Med., 2003, 69, 864-866. b) Merza, J.; Mallet, S.; Litaudon, M.; Dumontet, V.; Seraphin, D.; Richomme, P. Planta Med., 2006, 72, 87-89. c) Cao, S.; Brodie, P. J.; Miller, J. S.; Ratovoson, F.; Birkinshaw, C.; Randrianasolo, S.; Rakotobe, E.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod., 2007, 70, 686-688. d) Xu, G.; Kan, W. L. T.; Zhou, Y.; Song, J.-Z.; Han, Q.-B.; Qiao, C.-F.; Cho, C.-H.; Rudd, J. A.; Lin, G.; Xu, H.-X. J. Nat. Prod., 2010, 73, 104-108.
(11) Protiva, P.; Hopkins, M. E.; Baggett, S.; Yang, H.; Lipkin, M.; Holt, P. R.; Kennelly, E. J.; Bernard I., W. I. Int. J. Cancer, 2008, 123, 687-694.
(12) Martins, F. T.; Assis, D. M.; Santos, M. H.; Camps, I.; Veloso, M. P.; Juliano, M. A.; Alves, L. C.; Doriguetto, A. C. Eur. J. Med. Chem., 2009, 44, 12301239.
(13) a) Xu, G.; Feng, C.; Zhou, Y.; Han, Q.-B.; Qiao, C.-F.; Huang, S.-X.; Chang, D. C.; Zhao, Q.-S.; Luo, K. Q.; Xu, H.-X. J. Agric. Food Chem., 2008, 56, 11144-11150. b) Huang, S.-X.; Feng, C.; Zhou, Y.; Xu, G.; Han, Q.-B.; Qiao, C.-F.; Chang, D. C.; Luo, K. Q.; Xu, H.-X. J. Nat. Prod., 2009, 72, 130-135.
(14) a) Naldoni, F. J.; Claudino, A. L. R.; Cruz, J. W.; Chavasco, J. K.; e Silva, P. M. F.; Veloso, M. P.; dos Santos, M. H. J. Med. Food, 2009, 12, 403-407. b) Kolodziejczyk, J.; Masullo, M.; Olas, B.; Piacente, S.; Wachowicz, B. Platelets, 2009, 487-492. c) Pereira, I. O.; Margues, M. J.; Pavan, A. L. R.; Codonho, B. S.; Barbieri, C. L.; Beijo, L. A.; Doriguetto, A. C.; D’Martin, E. C.; dos Santos, M. H. Phytomedicine, 2010, 17, 339-345.
(15) Nicolaou, K. C.; Pfefferkorn, J. A.; Kim, S.; Wei, H. X. J. Am. Chem. Soc., 1999, $121,4724-4725$. For a general synthesis of the [3.3.1] bicyclic core see: Nicolaou, K. C.; Carenzi, G. E. A.; Jeso, V. Angew. Chem. Int. Ed., 2005, 44, 3895-3899.
(16) Spessard, S. J.; Stoltz, B. M. Org. Lett., 2002, 4, 1943-1946.
(17) Other incomplete approaches by Shibasaki: a) Usuda, H.; Kanai, M.; Shibasaki, M. Tetrahedron Lett., 2002, 43, 3621-3624. b) Usuda, H.; Kanai, M.; Shibasaki, M. Org. Lett., 2002, 4, 859-862. c) Usuda, H.; Kuramochi, A.; Kanai, M.; Shibasaki, M. Org. Lett., 2004, 6, 4387-4390. d) Shimizu, Y.; Kuramochi, A.; Usuda, H.; Kanai, M.; Shibasaki, M. Tetrahedron Lett., 2007, 48, 4173-4177.
(18) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc., 2005, 127, 14200-14201.
(19) Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed., 2010, 49, 1103-1106.
(20) Siegel, D. R.; Danishefsky, S. J. J. Am. Chem. Soc., 2006, 128, 1048-1049.
(21) Tsukano, C.; Siegel, D. R.; Danishefsky, S. J. Angew. Chem. Int. Ed., 2007, 46, 8840-8844.
(22) Qi, J.; Porco Jr., J. A. J. Am. Chem. Soc., 2007, 129, 12682-12683.
(23) Nuhant, P.; David, M.; Pouplin, T.; Delpech, B.; Marazano, C. Org. Lett., 2007, 9, 287-289.
(24) Other incomplete approaches by Simpkins: a) Rodeschini, V.; Ahmad, N. M.; Simpkins, N. S. Org. Lett., 2006, 8, 5283-5285. b) Rodeschini, V.; Simpkins, N. S.; Wilson, C. J. Org. Chem., 2007, 72, 4265-4267. c) Ahmad, N. M.; Rodeschini, V.; Simpkins, N. S.; Ward, S. E.; Wilson, C. Org. Biomol. Chem., 2007, 5, 1924-1934.
(25) Ahmad, N. M.; Rodeschini, V.; Simpkins, N. S.; Ward, S. E.; Blake, A. J. J. Org. Chem., 2007, 72, 4803-4815.
(26) a) Mehta, G.; Bera, M. K. Tetrahedron Lett., 2006, 47, 689-692. b) Mehta, G.; Bera, M. K., Chatterjee, S. Tetrahedron Lett., 2008, 49, 1121-1124. c) Mehta, G.; Bera, M. K. Tetrahedron Lett., 2009, 50, 3519-3522.
(27) Mehta, G.; Bera, M. K. Tetrahedron Lett., 2004, 45, 1113-1116.
(28) Abe, M.; Nakada, M. Tetrahedron Lett., 2007, 48, 4873-4877.
(29) Kraus, G. A.; Nguyen, T. H.; Jeon, I. Tetrahedron Lett., 2003, 44, 659-661.
(30) Couladouros, E. A.; Dakanali, M.; Demadis, K. D.; Vidali, V. P. Org. Lett., 2009, 11, 4430-4433.
(31) Hong, F.-T.; Lee, K.-S.; Tsai, Y.-F.; Liao, C.-C. J. Chin. Chem. Soc., 1998, 45, 1-12.
(32) Villar, F.; Eguey, O.; Renaud, P. Org. Lett., 2000, 2, 1061-1064.
(33) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu J.-X.; Yamamoto, Y. J. Org. Chem., 2000, 65, 6179-6186.
(34) Tsukano, C.; Siegel, D. R.; Danishefsky, S. J. Angew. Chem. Int. Ed., 2007, 46, 8840-8844.
(35) O’Brien, P. J. Chem. Soc., Perkin Trans. 1, 1998, 8, 1439-1458.

APPENDIX 1

A1.1 Experimental Procedures for Chapter 1

General Information: Commercial reagents were purchased and used without further purification. All glassware was flame dried and reactions were performed under a nitrogen atmosphere, unless otherwise stated. Toluene, dichloromethane, diethyl ether, and THF were dried over a column of alumina. Flash chromatography was done with MP Silitech 32-63D $60 \AA$ silica, and thin layer chromatography (TLC) was performed with EMD $250 \mu \mathrm{~m}$ silica gel $60-\mathrm{F}_{254}$ plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data was acquired on a Varian Inova 400, 500, or $600(400,500$ or 600 MHz$)$ spectrometer and referenced to residual protic solvent or TMS. IR spectroscopy was done on a Nicolet Avatar 370 OTGS spectrometer. Highresolution mass spectrometry was performed at the University of Illinois at Urbana-Champaign facility.

A mixture of magnesium turnings $(1.600 \mathrm{~g}, 0.067 \mathrm{~mol})$ and a crystal of I_{2} in diethyl ether $(60.0 \mathrm{~mL})$ was refluxed at $45^{\circ} \mathrm{C}$. Through a condenser 5 -bromo-1-pentene ($5.000 \mathrm{~g}, 0.034 \mathrm{~mol}$) was added over 30 minutes. The reaction was refluxed an additional hour. In a separate flask, a solution of methacrolein $(3.9 \mathrm{~mL}, 47.5 \mathrm{mmol})$ in diethyl ether $(5.0 \mathrm{~mL})$ was cooled to $-10^{\circ} \mathrm{C}$. The Grignard solution was cannulated into the solution of methacrolein over 30 min . The reaction was stirred an additional 30 min at $-10^{\circ} \mathrm{C}$ and then warmed to room temperature over 2.5 hr . The reaction was subsequently quenched over ice with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ followed by 2 M HCl . The aqueous layer was extracted with ethyl acetate (3 x 30.0 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a residue, which was purified by column chromatography ($15 \% \mathrm{EtOAc}$: hexanes) to give the allylic alcohol (4.200 $\mathrm{g}, 90 \%$) as a light yellow oil.

FTIR (thin film/NaCl) 3368, 3075, 2976, 2935, 2861, 1641, 1442, 1066, 1029, $995 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}$, $\mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{bs}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.21(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.5,138.6,114.5,110.9,75.7,34.2,33.5,24.8,17.3$.

A solution of the allylic alcohol ($6.100 \mathrm{~g}, 0.044 \mathrm{~mol}$), triethyl orthoacetate ($39.7 \mathrm{~mL}, 217.7 \mathrm{mmol}$), and propionic acid $(0.08 \mathrm{~mL}, 1.10 \mathrm{mmol})$ was refluxed at $140^{\circ} \mathrm{C}$ for 1.5 hr and then $145^{\circ} \mathrm{C}$ for 0.5 hr . The low boiling components were collected in a sidearm flask cooled to $-78^{\circ} \mathrm{C}$. The solution was then cooled to room temperature. The reaction was quenched over ice with 2 M HCl . The aqueous layer was extracted with ethyl acetate ($3 \times 50.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded a residue, which was purified by column chromatography (5% EtOAc: hexanes) to give ethyl ester ($8.400 \mathrm{~g}, 92 \%$) as a clear oil.

FTIR (thin film/ NaCl) 2980, 2928, 2850, 1737, 1440, $1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80$ $(\mathrm{m}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.12-1.90$ $(\mathrm{m}, 4 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,139.2$, $133.8,125.4,114.6,60.5,34.9,33.6,33.5,29.1,27.5,16.2,14.5$; HRMS (EI) $m / z 210.1618$ [calc'd for $\left.\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{M}+) 210.1620\right]$.

Ethyl ester ($4.400 \mathrm{~g}, 0.021 \mathrm{~mol}$) in $95 \% \mathrm{n}$-hexane (175.0 mL) was cooled to $-78^{\circ} \mathrm{C}$. Diisobutyl aluminum hydride ($22.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes) was added down the side of the cooled reaction flask over 1 hr . After the addition, the solution was stirred an additional 30 min . The reaction was quenched at $-78^{\circ} \mathrm{C}$ with 20% sodium potassium tartrate (125.0 mL) and immediately warmed to room temperature. Brine was added to help with the separation of the organic and aqueous layers. The aqueous layer was extracted with ethyl acetate ($5 \times 50.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded the aldehyde which was taken on crude.

FTIR (thin film/ NaCl) $3075,2924,2856,1726,1677,1640,1440,1382,1237,992,909 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H})$, $2.52(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H})$.

The aldehyde ($3.500 \mathrm{~g}, 0.021 \mathrm{~mol}$) in 35 mL THF was cooled to $-10^{\circ} \mathrm{C}$. Isopropenyl magnesium bromide ($63.0 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF) was added over 1 hr via addition funnel. The reaction stirred at $10^{\circ} \mathrm{C}$ for an additional 15 min and then warmed to room temperature over 45 min . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and then acidified to pH 2.0 using 2 M HCl . The aqueous layer was extracted with ethyl acetate ($3 \times 30.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded a residue, which was purified by column chromatography (15% EtOAc: hexanes) to give the alcohol ($2.500 \mathrm{~g}, 62 \%$) as a yellow oil.

FTIR (thin film $/ \mathrm{NaCl}$) 3364, 3075, 2974, 2920, 2855, 1640, 1441, 1374, 992, $907 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H})$, $4.05(\mathrm{dd}, \mathrm{J}=6.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.92(\mathrm{~m}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,138.8,134.8,124.6,114.3,110.9,75.5,35.6,33.3,33.1$, 28.9, 27.2, 17.4, 15.9; HRMS (EI) $m / z 208.1826$ [calc'd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}(\mathrm{M}+$) 208.1827].

Sodium hydride ($1.400 \mathrm{~g}, 0.035 \mathrm{~mol}, 60 \%$ in mineral oil) was washed with n-hexane ($4 \times 10.0 \mathrm{~mL}$) and dried in vacuo. The resultant residue was suspended in THF (8.0 mL). Alcohol ($1.600 \mathrm{~g}, 7.800 \mathrm{mmol}$) dissolved in THF (16.0 mL) was added to the NaH suspension and stirred for 1 hr . A solution of bromoacetic acid ($1.100 \mathrm{~g}, 8.200 \mathrm{mmol}$) in THF (5.0 mL) was added via reflux condenser over 20 min . The reaction refluxed at $85^{\circ} \mathrm{C}$ for 6 hr and subsequently cooled to room temperature. The reaction was quenched dropwise with 2 M HCl and then acidified to pH 1 . The aqueous layer was extracted with ethyl acetate ($4 \times 30.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded the acid which was taken on crude to the next step.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.93(\mathrm{~m}, 8 \mathrm{H}), 1.66(\mathrm{dd}, \mathrm{J}=0.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, 1.42 (m, 2H).

Diisopropyl amine ($3.9 \mathrm{~mL}, 28.1 \mathrm{mmol}$) in THF (20.0 mL) was cooled to $-78^{\circ} \mathrm{C}$. To this solution, $n \mathrm{BuLi}\left(17.8 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in hexane) was added slowly. The solution was warmed to $0^{\circ} \mathrm{C}$ over 1 hr . Upon cooling back down to $-78^{\circ} \mathrm{C}$, the crude acid in THF (9.0 mL) was slowly added. The reaction was warmed to $-45^{\circ} \mathrm{C}$ for 3.5 hr . The reaction was quenched dropwise with 2 M HCl and then acidified to pH 1. The aqueous layer was extracted with ethyl acetate $(4 \times 30.0 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded the new acid which was taken on crude to the next step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H})$, $4.28(\mathrm{dd}, \mathrm{J}=3.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=3.9,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=9.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-1.91$ (m, $8 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 2 \mathrm{H})$.

A suspension of lithium aluminum hydride $(0.750 \mathrm{~g}, 0.020 \mathrm{~mol})$ in diethyl ether $(25.0 \mathrm{~mL})$ was stirred at room temperature. The crude acid in diethyl ether $(25.0 \mathrm{~mL})$ was added via reflux condenser. The reaction was refluxed at $50^{\circ} \mathrm{C}$ for 1.5 hr and was subsequently cooled to room temperature. The reaction was quenched slowly over ice using $3 \mathrm{M} \mathrm{HCl}(40.0 \mathrm{~mL})$ and then stirred vigorously for 30 min at room temperature. The mixture was filtered through Celite and washed with ethyl acetate (3×20.0 mL). The filtrate was washed with brine. The aqueous layer was extracted with ethyl acetate (5×50.0 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded a residue which was purified by column chromatography (gradient, $50 \% \mathrm{EtOAc}$: hexanes to $100 \% \mathrm{EtOAc}$) to give the diol ($1.700 \mathrm{~g}, 80 \%$ over 3 steps $)$.

FTIR (thin film/NaCl) 3368, 2920, 2840, 2800, 1640, 1441, 1380, 1100, 1040, $909 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}$, $1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=6.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{bs}, 1 \mathrm{H}), 2.25(\mathrm{bs}, 1 \mathrm{H}), 2.19-1.92(\mathrm{~m}, 10 \mathrm{H}), 1.64$ $(\mathrm{s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9,134.8,131.1,128.5,124.8$, $114.3,69.1,66.5,43.6,39.5,33.3,29.0,27.3,26.4,16.1,15.8$; HRMS (EI) $m / z 252.2088$ [calc'd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2}(\mathrm{M}+)$ 252.2089].

A solution of lead tetraacetate $(0.920 \mathrm{~g}, 2.100 \mathrm{mmol})$ and sodium carbonate $(0.220 \mathrm{~g}, 2.100 \mathrm{mmol})$ in methylene chloride $(15.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. The diol $(0.500 \mathrm{~g}, 2.000 \mathrm{mmol})$ in methylene chloride $(5.0 \mathrm{~mL})$ was added to the solution at $0^{\circ} \mathrm{C}$. After an additional 10 min the reaction was warmed to room temperature over 1 hr . The reaction was quenched with ethylene glycol (2.0 mL). The mixture was filtered through Celite and rinsed with methylene chloride ($3 \times 15.0 \mathrm{~mL}$). The combined organic layers were washed with saturated sodium bicarbonate solution and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded aldehyde, which was taken on crude to the next step.

FTIR (thin film/ NaCl) 3075, 2924, 2856, 1726, 1677, 1640, 1440, 1382, 1237, 992, $909 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.28(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.99$ $(\mathrm{m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}), 2.08-1.93(\mathrm{~m}, 8 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 198.8$, 139.4, 135.1, 130.6, 127.3, 125.5, 115.1, 54.6, 40.0, 34.0, 29.8, 28.0, 27.3, 17.1, 16.4; HRMS (ES+) $m / z 220.1823$ [calc'd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$220.1827].

A tetrahydrofuran $(16.0 \mathrm{~mL})$ solution of enol ether $(8.120 \mathrm{~g}, 0.048 \mathrm{~mol})$ was added dropwise to a solution (64.0 mL THF) of freshly prepared LDA $(0.051 \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$. This mixture was stirred at $78^{\circ} \mathrm{C}$ for 1 hour before addition of allyl bromide $(9.490 \mathrm{~g}, 0.058 \mathrm{~mol})$ in 16.0 mL of THF. [For preparation of allyl bromide see: a) Kim, S.; Park, J. H. J. Org. Chem. 1988, 53, 3111-3113; b) Gomez, L.; Gellibert, F.; Wagner, A.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 6049-6052]. Stirring was continued at $-78^{\circ} \mathrm{C}$ for an hour before warming to $0^{\circ} \mathrm{C}$. This mixture was diluted with water $(100.0 \mathrm{~mL})$ and ethyl acetate (60.0 mL). The aqueous layer was extracted with ethyl acetate, dried over MgSO_{4} and concentrated. This product was dissolved in 87.0 mL of dry THF and cooled to $-78^{\circ} \mathrm{C}$ before MeLi $(80.5 \mathrm{~mL}, 1.6 \mathrm{M}, 0.129 \mathrm{~mol})$ was added. This temperature was maintained for 30 minutes before warming to $0^{\circ} \mathrm{C}$. After an hour $2 \mathrm{M} \mathrm{HCl}(65.0 \mathrm{~mL})$ was added and stirring was continued for 12 hours before diluting with water $(100.0 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate (3×80.0 mL) and dried over MgSO_{4}, concentrated, and purified by silica gel chromatography (20% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to give enone ($6.700 \mathrm{~g}, 72 \%, 2$ Steps).

FTIR (thin film $/ \mathrm{NaCl}$) 2958, 2874, 1737, 1690, 1436, 1376, 1217, $968,858 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,165.4,133.2,127.3,126.8,39.5,34.5,34.3,33.7,26.2,23.0,22.4,13.5$; HRMS (EI+) $\mathrm{m} / \mathrm{z} 192.1512$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}(\mathrm{M}+)$ 192.1515].

An ethereal (14.0 mL) solution of $\mathrm{CuI}(0.700 \mathrm{~g}, 3.670 \mathrm{mmol})$ was cooled to $-5^{\circ} \mathrm{C}$ before dropwise addition of $\mathrm{MeLi}(4.6 \mathrm{~mL}, 1.6 \mathrm{M}, 7.35 \mathrm{mmol})$. After 30 minutes at $-5^{\circ} \mathrm{C}$ enone ($0.565 \mathrm{~g}, 2.940 \mathrm{mmol}$) in ether (4.3 mL) was added dropwise and stirred 90 minutes. The reaction was cooled to $-78^{\circ} \mathrm{C}$ before dropwise addition of distilled $\mathrm{TMSCl}(1.9 \mathrm{~mL}, 14.7 \mathrm{mmol})$, followed by dropwise addition of distilled $\mathrm{Et}_{3} \mathrm{~N}(2.1 \mathrm{~mL}, 14.7 \mathrm{mmol})$. This mixture was warmed to room temperature over 1 hour and poured slowly over ice, diluted with water $(20.0 \mathrm{~mL})$ and methylene chloride $(20.0 \mathrm{~mL})$. The aqueous layer was extracted with methylene chloride ($2 \times 20.0 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified with silica gel chromatography (92:4:4 hexane: EtOAc: $\mathrm{Et}_{3} \mathrm{~N}$) to give silyl enol ether ($0.725 \mathrm{~g}, 88 \%$).

FTIR (thin film/NaCl) 2957, 2929, 2865, 1722, 1668, 1463, 1367, 1252, 1206, 1154, 966, 933, 823, $805 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.44-5.34(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.98(\mathrm{dd}, \mathrm{J}=6.9,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}$, $1 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 149.4,131.7$, 130.4, 116.4, 44.2, 35.2, 34.7, 33.6, 30.3, 24.4, 24.2, 23.2, 13.9; HRMS (EI+) $m / z 280.2211$ [calc'd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OSi}(\mathrm{M}+)$ 280.2223].

TMS enol ether $(0.422 \mathrm{~g}, 1.500 \mathrm{mmol})$ in diethyl ether $(2.9 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Methyl lithium ($1.0 \mathrm{~mL}, 1.6 \mathrm{M}$ in diethyl ether) was added dropwise. The solution was warmed to room temperature over 1.25 hr . The reaction was cooled to $-10^{\circ} \mathrm{C}$ and zinc chloride ($1.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in diethyl ether) was added dropwise over 15 min . The reaction stirred at $-10^{\circ} \mathrm{C}$ for 20 min and then the bath was removed and allowed to sit at room temperature for 1 min before cooling to $-45^{\circ} \mathrm{C}$. Aldehyde $(0.166 \mathrm{~g}, 0.750$ $\mathrm{mmol})$ in diethyl ether $(1.3 \mathrm{~mL})$ was added dropwise over 15 min . The reaction was allowed to warm to $-35^{\circ} \mathrm{C}$ over 1.5 hr . The reaction was then poured onto saturated $\mathrm{NH}_{4} \mathrm{Cl}(15.0 \mathrm{~mL})$. The organic layer was diluted with ethyl acetate $(10.0 \mathrm{~mL})$ and then washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10.0 \mathrm{~mL})$ and brine (2 x $10.0 \mathrm{~mL})$. The aqueous layers were extracted with ethyl acetate ($3 \times 10.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentrating the solvent in vacuo afforded the aldol adduct, which was taken on crude to the next step.

Crude aldol product in methylene chloride (7.2 mL) and triethylamine (5.8 mL) was cooled to $0^{\circ} \mathrm{C}$ in a sealed tube. Chlorotrimethylsilane ($0.36 \mathrm{~mL}, 2.80 \mathrm{mmol}$) was added slowly. The tube was sealed and warmed to room temperature over 18 hr . The reaction was quenched by diluting with methylene chloride (10.0 mL) and brine (20.0 mL). The aqueous layer was extracted with methylene chloride (3 x 10.0 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed and residue filtered through Celite (2:5:93 $\mathrm{Et}_{3} \mathrm{~N}$: EtOAc: hexanes, 50.0 mL). Concentration of the solvent and silica purification $\left(2: 5: 93 \mathrm{Et}_{3} \mathrm{~N}\right.$: EtOAc: hexanes) gave TMS aldol product ($0.490 \mathrm{~g}, 65 \%$).

FTIR (thin film/ NaCl) 2957, 2929, 2871, 1716, 1457, 1249, 968, $841 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 2.44-$ $2.14(\mathrm{~m}, 5 \mathrm{H}), 2.13-1.86(\mathrm{~m}, 13 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.49-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}$, $\mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 213.8, 139.0, 135.0, 132.0, 131.9, 129.4, $128.3,124.4,114.3,69.8,61.7,48.1,44.1,41.0,40.0,39.5,34.7,33.3,32.0,29.0,27.3,26.6,26.2,25.7$, 24.8, 22.7, 16.4, 16.0, 13.6, 0.8; HRMS (ES+) $m / z 501.4119$ [calc'd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 501.4128$].

TMS aldol adduct ($0.580 \mathrm{~g}, 1.200 \mathrm{mmol}$) in THF (30.0 mL) was cooled to $-78^{\circ} \mathrm{C}$. Lithium hexamethyldisilazide ($3.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) was added dropwise over 35 min . A solution of Comin's reagent $(0.910 \mathrm{~g}, 2.300 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ was added over 30 min . The reaction was stirred at $78^{\circ} \mathrm{C}$ for an additional 4.5 hr . The reaction was quenched with brine (5.0 mL) and warmed to room temperature. The mixture was washed with brine $(30.0 \mathrm{~mL})$ and $\mathrm{NaOH}(1 \mathrm{M}, 30.0 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate (3 x 30.0 mL). The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified with silica (10% EtOAc: hexanes) to give vinyl triflate ($0.702 \mathrm{~g}, 95 \%$).

FTIR (thin film/NaCl) 2960, 2927, 1690, 1641, 1419, 1247, 1200, 1146, 1087, 1024, 903, $841 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.09(\mathrm{~m}, 4 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}$, $1 \mathrm{H}), 2.40-2.15(\mathrm{~m}, 5 \mathrm{H}), 2.14-1.89(\mathrm{~m}, 12 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 2 \mathrm{H}), 1.51-1.30(\mathrm{~m}, 5 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, ~ 3 \mathrm{H}), \quad 0.89(\mathrm{t}, \quad \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, \quad 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \quad$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 150.2,139.0,135.1,132.0,131.9,128.9,128.2,124.4,118.6,114.3,70.6,54.4,47.4,39.5,37.6,34.7$, 33.4, 32.4, 29.1, 27.5, 27.4, 27.3, 26.7, 26.0, 23.6, 22.7, 16.6, 15.9, 13.7, 0.2; HRMS (ES +) $\quad \mathrm{m} / \mathrm{z}$ 655.3437 [calc'd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{NaF}_{3} \mathrm{SSi}(\mathrm{M}+\mathrm{Na}) 655.3440$].

The TMS-protected vinyl triflate ($0.050 \mathrm{~g}, 0.079 \mathrm{mmol}$) in THF $(2.0 \mathrm{~mL})$ and methanol $(2.0 \mathrm{~mL})$ was stirred at room temperature. Approximately 10 pieces of Amberlyst 15 resin were added to the solution. After 3 hr , the reaction was filtered through Celite using diethyl ether (15.0 mL). Triethylamine (2.0 mL) was added to the filtrate. Concentration of the solvent in vacuo afforded a residue which was purified with silica ($8 \% \mathrm{Et}_{2} \mathrm{O}$: hexanes) to give the alcohol ($0.042 \mathrm{~g}, 95 \%$).

FTIR (thin film/ NaCl) 3500 , 2959, 2922, 2857, 1417, 1245, 1210, 1144, 1022, $915,861 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.20(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H})$, $3.85(\mathrm{~m}, 1 \mathrm{H}), 2.41-1.90(\mathrm{~m}, 17 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{bs}, 1 \mathrm{H}), 1.12(\mathrm{~s}$, $3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,139.2,134.9$, 132.5, $131.8,129.8,128.7,125.2,119.7,114.5,67.5,55.8,46.5,39.7,38.0,37.5,34.9,33.6,32.7,29.2,28.1$, 27.6, 26.6, 26.0, 22.9, 22.8, 16.1, 16.0, 13.9; HRMS (ES+) m/z 561.3249 [calc'd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{~S}$ $\left.\left(\mathrm{M}+\mathrm{H}^{+}\right) 561.3225\right]$.

Palladium tetrakis ($0.207 \mathrm{~g}, 0.180 \mathrm{mmol}$) was added to an $18 \times 150 \mathrm{~mm}$ test tube with stir bar inserted into a Fisher-Porter bottle which was evacuated (100 torr) and backfilled with argon three times. A degassed solution of vinyl triflate $(0.400 \mathrm{~g}, 0.720 \mathrm{mmol})$ and triethylamine ($0.30 \mathrm{~mL}, 2.2 \mathrm{mmol}$) in DMF (7.0 mL) was added. The bottle was pressured to 62 psi CO then heated to $50^{\circ} \mathrm{C}$ for 15 hr . Upon cooling, the CO was released and air bubbled through for 10 min . Solvent was removed and the residue dissolved in methylene chloride (10.0 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(20.0 \mathrm{~mL})$ and $\mathrm{HCl}(1 \mathrm{M}, 3.0 \mathrm{~mL})$. The aqueous layer was extracted with 50:50 $\mathrm{Et}_{2} \mathrm{O}$: hexanes (7 x 10.0 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The extracts were concentrated and purified by column chromatography ($7 \% \mathrm{EtOAc}$: hexanes) to give lactone ($0.289 \mathrm{~g}, 92 \%$).

FTIR (thin film/NaCl) 2958, 2925, 2872, 1740, 1686, 1428, 1320, 1215, 1141, 1000, $971 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82(\mathrm{dd}, \mathrm{J}=3.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{~m}$, $1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.16-1.87(\mathrm{~m}, 12 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.1,139.3,135.2,135.0,133.1,130.8,128.7,127.9,124.7,114.5,81.9,46.9,45.6,44.2$, $40.0,35.0,34.9,33.6,32.6,29.3,27.6,27.0,26.9,25.8,24.9,22.8,16.6,16.2,13.9$; HRMS (ES+) m / z 439.3571 [calc'd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 439.3576$].

A solution of lactone $(0.246 \mathrm{~g}, 0.560 \mathrm{mmol})$ in toluene $(16.0 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with diisobutylaluminum hydride ($4.5 \mathrm{~mL}, 1.0 \mathrm{M}$ toluene) dropwise over 20 min . After 5 min , the reaction was warmed to $0^{\circ} \mathrm{C}$ for 30 min and then $30^{\circ} \mathrm{C}$ for another 30 min . The reaction was quenched with HCl $(3 \mathrm{M}, 8.0 \mathrm{~mL})$ and stirred for 25 min at room temperature. The mixture was saturated with NaCl and the aqueous layer was extracted with ethyl acetate ($5 \times 10.0 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent gave a residue which was purified with silica (25% EtOAc: hexanes) to give the diol $(0.231 \mathrm{~g}$, 93\%).

FTIR (thin film $/ \mathrm{NaCl}$) 3285, 2940, 2871, 1667, 1640, 1438, 1384, 1052, 998, 969, $909 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H})$, $4.92(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{bs}, 1 \mathrm{H}), 2.55(\mathrm{bs}, 1 \mathrm{H}), 2.33-1.82(\mathrm{~m}, 17 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}$, $3 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 5 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,135.8,134.7,132.0,131.4,129.1,128.9,125.9,124.9,114.2,68.6,67.9,53.7,45.6,39.4,38.4$, $34.6,33.6,33.3,29.5,28.9,27.3,26.5,26.3,23.2,22.6,16.0,15.8,13.6$; HRMS (ES+) $\mathrm{m} / \mathrm{z} 443.3880$ [calc'd for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 443.3889$].

Pyridyl carbonate ($0.029 \mathrm{~g}, 0.136 \mathrm{mmol}$) was added to the diol $(0.050 \mathrm{~g}, 0.113 \mathrm{mmol})$ in dry toluene $(2.5 \mathrm{~mL})$. This reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 19 hours, cooled to room temperature, and concentrated in vacuo. Purification using silica gel chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded carbonate ($0.038 \mathrm{~g}, 73 \%$).

FTIR (thin film/ NaCl) 2959, 2925, 2873, 1740, 1454, 1389, 1368, 1264, 1168, 1143, 1062, 969, 909 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.06(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.93$ $(\mathrm{m}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.13-1.86(\mathrm{~m}, 10 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$, 1.68-1.60 (m, 2H), $1.57(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,139.1,135.0,132.1,131.8,129.2,129.1,128.7,124.3,114.2,109.7,80.1,75.4$, $53.3,53.3,53.2,42.0,39.1,34.7,34.1,33.3,32.7,29.0,28.3,27.3,26.6,24.4,22.6,16.0,15.5,13.7$; HRMS (ES+) m/z 491.2500 [calc'd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 491.3501$].

The carbonate $(0.008 \mathrm{~g}, 0.018 \mathrm{mmol})$ was dissolved in dry toluene (37.0 mL) and refluxed under nitrogen, before addition of Grubbs second generation catalyst ($0.005 \mathrm{~g}, 0.005 \mathrm{mmol}$). After 8 minutes the reaction was immediately cooled to $0^{\circ} \mathrm{C}$ in an ice bath and then warmed to room temperature. The reaction mixture was filtered through a plug of silica. The plug was thoroughly rinsed with 35% EtOAc/hexanes. The solvent was evaporated and the residue was purified on silica using 20% $\mathrm{EtOAc} /$ hexanes affording diene ($0.006 \mathrm{~g}, 95 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.09(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H})$, $2.61(\mathrm{~m}, 1 \mathrm{H}), 2.44-1.80(\mathrm{~m}, 8 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\delta 154.7,135.2,133.2,132.4,131.1,128.6,125.0,80.7,75.7,57.0,42.8,40.6,33.6$, 32.1, 29.6, 28.0, 25.1, 24.2, 22.8, 22.4, 15.0; HRMS (EI+) m/z 330.2195 [calc'd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$ (M+) 330.2195]. Carbon shifts extracted from HSQC and HMBC spectra.

Titanium isopropoxide $(0.07 \mathrm{~mL}, 0.23 \mathrm{mmol})$ in toluene $(0.8 \mathrm{~mL})$ was added to allylic alcohol $(0.010 \mathrm{~g}$, 0.023 mmol) in toluene (46.0 mL) in a three neck round bottom flask with thermometer, reflux condenser, and nitrogen sparging tube. The solution was heated to an internal temp of $80^{\circ} \mathrm{C}$ for 1 hr . The sparging tube was immersed in the mixture, and the internal temp was increased to $111^{\circ} \mathrm{C}$. A fresh solution of second generation Grubbs $(0.006 \mathrm{~g}, 0.007 \mathrm{mmol})$ in toluene $(0.4 \mathrm{~mL})$ was added. The reaction was stirred for 8 min then immersed in an ice bath. $\mathrm{NaOH}(3 \mathrm{M}, 5 \mathrm{~mL})$ and an isocyanide $(0.003 \mathrm{~g}, 0.027 \mathrm{mmol})$ in 0.5 mL of methanol was added to render the catalyst inactive by stirring 15 min at room temp. [For preparation and use of the isocyanide see: Diver, S.T. Org. Lett. 2007, 9, 1203-1206]. The mixture was acidified with $\mathrm{HCl}(2 \mathrm{M}, 8.0 \mathrm{~mL})$, extracted with toluene ($3 \times 50.0 \mathrm{~mL}$), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo and silica gel chromatography afforded triene diol ($0.007 \mathrm{~g}, 95 \%$).

FTIR (thin film/NaCl) 3269, 2940, 2915, 1662, 1451, 1384, 1364, 1265, 1034, 1006, 952, 888, $807 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}$, $\mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=8.7,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-1.77(\mathrm{~m}, 9 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.51-0.99$ (m, 2H), 0.95 (s, 3H), 0.74 (s, 3H); ${ }^{13} \mathbf{C}$ NMR $\delta 135.4,134.9,131.7,129.9$, 129.7, 124.2, 69.6, 69.3, $59.8,47.7,40.4,35.0,34.0,32.3,26.8,24.2,23.4,22.8,21.8,15.1$; HRMS (ES+) m/z 327.2306 [calc'd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 327.2300$]. Carbon shifts extracted from HSQC and HMBC spectra.

To a solution of diol $(0.012 \mathrm{~g}, 0.039 \mathrm{mmol})$ in methylene chloride $(0.4 \mathrm{~mL})$ was added triethylamine $(0.11 \mathrm{~mL}, 0.78 \mathrm{mmol})$, dimethylaminopyridine $(0.010 \mathrm{~g}, 0.080 \mathrm{mmol})$ in methylene chloride $(0.4 \mathrm{~mL})$, and acetic anhydride $(0.04 \mathrm{~mL}, 0.39 \mathrm{mmol})$ in methylene chloride $(0.4 \mathrm{~mL})$. The reaction was stirred for 1 hr at room temperature. Upon completion, the reaction was quenched with brine (3.0 mL). The aqueous layer was extracted with ethyl acetate ($3 \times 2.0 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded a residue which was purified by column chromatography ($25 \% \mathrm{EtOAc}$: hexanes) to give bis-acetate ($0.014 \mathrm{~g}, 92 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=14.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.06(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR δ $170.8,170.0,132.6,135.5,131.3,130.8,130.7,129.7,72.9,68.6,54.0,43.8,42.2,41.4,36.7,32.5$, 30.1, 26.3, 24.3, 23.0, 21.6, 21.6, 21.0, 15.1; HRMS (EI+) m/z 411.2511 [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})$ 411.2492]. Carbon chemical shifts extracted from HSQC and HMBC data.

Triene $(0.010 \mathrm{~g}, 0.026 \mathrm{mmol})$ was dissolved in acetone $(0.3 \mathrm{~mL})$ and treated with a freshly prepared dimethyl dioxirane solution $(0.5 \mathrm{~mL}, 0.1 \mathrm{M}$ in acetone, 0.052 mmol$)$. The reaction is stirred 10 minutes while being monitored by TLC. The solvent was evaporated to yield pure bis epoxide ($0.010 \mathrm{~g}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}$, $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, \mathrm{J}=4.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, 11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\delta 170.5,169.9,132.3,127.6,71.1,67.8,65.9,63.7,59.7,59.0,53.4,42.5,35.4,34.7$, 29.3, 28.5, 27.3, 26.7, 25.5, 22.1, 21.4, 21.3, 21.0, 16.4; HRMS (EI+) m/z 420.2519 [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6}(\mathrm{M}+) 420.2512$]. Carbon chemical shifts extracted from HSQC and HMBC data.

Bis-epoxide ($0.008 \mathrm{~g}, 0.190 \mathrm{mmol}$) was dissolved in dry THF $(1.9 \mathrm{~mL})$ and treated consecutively with triethylamine and formic acid $\left(26 \mu \mathrm{Lt}_{3} \mathrm{~N}\right.$ and $7.2 \mu \mathrm{LHCOOH}, 0.190 \mathrm{mmol}$ each dissolved in 0.2 mL THF) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.011 \mathrm{~g}, 0.008 \mathrm{mmol})$. This reaction mixture was heated at $75^{\circ} \mathrm{C}$ for 15 hours before being evaporated to dryness. Purification using silica gel chromatography (33% $\mathrm{EtOAc} /$ hexanes $)$ afforded the desired exo-olefin containing product ($0.006 \mathrm{~g}, 87 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.38(\mathrm{dd}, \mathrm{J}=2.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.27-1.98(\mathrm{~m}, 8 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.14(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\delta 170.4,143.4,116.1,71.1,65.9,64.4,60.0,59.6,59.2,43.1,38.0$, 35.7, 33.2, 28.5, 27.2, 27.0, 26.4, 25.3, 22.2, 22.2, 21.8, 16.7; HRMS (ES+) m/z 385.2355 [calc'd for $\left.\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 385.2355\right]$. Carbon chemical shifts extracted from HSQC and HMBC data.

Exocyclic olefin product ($0.001 \mathrm{~g}, 0.003 \mathrm{mmol}$) was dissolved in dry 50:50 DCM:MeOH (0.8 mL) and selenium dioxide was added in one portion. The reaction was then heated at $65^{\circ} \mathrm{C}$ for 15 hours. The reaction was concentrated to remove the methanol and brought up in dry methylene chloride (0.8 mL). Freshly prepared Dess-Martin Periodinane was then added and the reaction was stirred for 1 hour. The reaction was concentrated and purified using silica gel chromatography ($33 \% \mathrm{EtOAc} / \mathrm{hexanes}$) affording enone ($0.0008 \mathrm{~g}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.23(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.70$ $(\mathrm{m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.31-1.99(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, 3H), 1.37-1.20 (m, 5H), $1.22(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR δ 199.1, 169.8, 141.5, 127.7, 70.6, 65.7, 62.7, 59.6, 59.2, 58.7, 42.3, 41.1, 36.2, 35.1, 26.3, 22.0, 21.5, 31.6, 27.2, 22.8, 21.4, 16.4; HRMS (ES+) $m / z 399.2138$ [calc'd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 399.2147]. Carbon chemical shifts extracted from HSQC and HMBC data.

Crude macrocycle (0.11 mmol) in methylene chloride (5.0 mL) was stirred at room temperature. Imidazole ($0.068 \mathrm{~g}, 1.000 \mathrm{mmol}$) and tert-butylchlorodimethylsilane ($0.050 \mathrm{~g}, 0.330 \mathrm{mmol}$) were added to the solution. After 30 min , the mixture was filtered through a plug of silica and eluted with 20% EtOAc: hexanes (30.0 mL). Concentration of the solvent in vacuo afforded a residue which was purified by column chromatography (9% EtOAc: hexanes) to give the protected alcohol $(0.028 \mathrm{~g}, 62 \%)$.

FTIR (thin film/NaCl) 3428, 2945, 2932, 2859, 1461, 1384, 1363, 1254, 1125, 1085, 1031, 1006, 860 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.04-3.97 (m, 2H), 2.46 (dd, J=8.7, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-1.87(\mathrm{~m}, 9 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.67-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.0$, $134.9,134.8,132.7,130.0,129.1,70.7,68.9,60.4,48.1,40.3,34.0,32.3,25.9,25.8,25.6,24.2,22.9$, 21.7, 18.3, 15.1, -3.6, -5.1, -5.4; HRMS (ES +) $m / z 419.3343$ [calc'd for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 419.3345$].

To a mixture of N-methylmorpholine oxide $(0.021 \mathrm{~g}, 0.180 \mathrm{mmol})$ and oven dried powdered $4 \AA$ sieves $(0.060 \mathrm{~g})$ was added TBS ether $(0.050 \mathrm{~g}, 0.120 \mathrm{mmol})$ in methylene chloride $(2.0 \mathrm{~mL})$ and acetonitrile $(0.4 \mathrm{~mL})$. Tetrapropylammonium perruthenate $(0.002 \mathrm{~g}, 0.006 \mathrm{mmol})$ in methylene chloride $(0.2 \mathrm{~mL})$ was added and the reaction was stirred for 45 min at room temperature. Concentration of the solvent in vacuo afforded a residue which was filtered through a plug of silica with ethyl acetate (20.0 mL). Concentration of the solvent in vacuo afforded the ketone which was taken on crude to the next step.

A solution of crude ketone (0.120 mmol) in THF (5.0 mL) was cooled to $0^{\circ} \mathrm{C}$. Lithium aluminum hydride $(0.115 \mathrm{~g}, 3.000 \mathrm{mmol})$ was slowly added to the solution and stirred 10 min before warming to room temp (1 hr). The reaction was quenched with ethyl acetate and then acidified to pH 1 with HCl (3 $\mathrm{M}, 3.0 \mathrm{~mL})$. Solid $\mathrm{NaCl}(0.500 \mathrm{~g})$ and brine (3.0 mL) were added followed by ethyl acetate extraction $(5 \mathrm{x} 5.0 \mathrm{~mL})$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography (60% EtOAc: hexanes) to give diol ($0.035 \mathrm{~g}, 96 \%$ over 2 steps).

FTIR (thin film $/ \mathrm{NaCl}$) 3341, 2958, 2935, 2868, 1659, 1453, 1384, 1364, 1265, 1099, 1043, 1002, 883 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}$, $\mathrm{J}=11.9,1 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=8.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-1.91(\mathrm{~m}, 9 \mathrm{H}), 1.81(\mathrm{bs}, 2 \mathrm{H})$, $1.75-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.8$, $133.8,130.1,127.3,126.9,125.5,75.1,67.1,57.9,42.7,40.7,35.6,32.0,29.7,29.3,27.0,26.8,24.6$, 22.9, 17.6; HRMS (ES+) m/z 327.2328 [calc'd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 327.2300$]. Carbon shifts extracted from HSQC and HMBC spectra.

To a solution of diol $(0.023 \mathrm{~g}, 0.076 \mathrm{mmol})$ in methylene chloride $(0.8 \mathrm{~mL})$ was added triethylamine $(0.21 \mathrm{~mL}, 1.50 \mathrm{mmol})$, dimethylaminopyridine $(0.018 \mathrm{~g}, 0.150 \mathrm{mmol})$ in methylene chloride (0.8 mL), and acetic anhydride $(0.07 \mathrm{~mL}, 0.76 \mathrm{mmol})$ in methylene chloride $(0.8 \mathrm{~mL})$. The reaction was stirred for 1.5 hr at room temperature. Upon completion, the reaction was quenched with brine (3.0 mL). The aqueous layer was extracted with ethyl acetate ($3 \times 2.0 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded a residue which was purified by column chromatography ($25 \% \mathrm{EtOAc}$: hexanes) to give the product ($0.030 \mathrm{~g}, 98 \%$).

FTIR (thin film/NaCl) 2961, 2921, 2871, 1730, 1455, 1430, 1364, 1210, 1092, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}$, $\mathrm{J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.11(\mathrm{~m}, 7 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}$, $3 \mathrm{H}), 1.66-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ES+) $\mathrm{m} / \mathrm{z} 411.2521$ [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na}) 411.2511]$.

A solution of starting material $(0.023 \mathrm{~g}, 0.059 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Osmium tetroxide in t-butanol ($0.662 \mathrm{~g}, 2.5 \mathrm{wt} \%$) was diluted in THF $(3.0 \mathrm{~mL})$ and slowly added to the solution at $0^{\circ} \mathrm{C}$. After 15 min , the reaction was warmed to room temp over 3 h . The reaction was quenched by stirring 48 h with saturated $\mathrm{NaHSO}_{3}(6.0 \mathrm{~mL})$. The reaction was filtered through a plug of Celite with ethyl acetate ($5 \times 3.0 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent in vacuo afforded a residue which was purified by column chromatography (50% EtOAc: hexanes) to give diol (0.019 g , 74%).

FTIR (thin film $/ \mathrm{NaCl}$) 3452, 2925, 2874, 1735, 1671, 1451, 1376, 1220, 1079, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, 12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=8.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.14(\mathrm{~m}, 8 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,169.9,135.5,132.3,132.3,130.8,95.0,78.0,74.2,67.3,55.0,40.6,38.9,35.3$, 34.5, 32.4, 28.8, 26.0, 25.0, 22.7, 22.1, 21.6, 21.0, 17.1; HRMS (ES+) m/z 445.2583 [calc'd for $\left.\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 445.2566\right]$.

Diol ($0.005 \mathrm{~g}, 0.012 \mathrm{mmol}$) was dissolved in methylene chloride $(1.2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.019 \mathrm{~g}, 0.237 \mathrm{mmol})$ and methanesulfonyl chloride ($0.020 \mathrm{~g}, 0.177 \mathrm{mmol}$) were added consecutively and the reaction was stirred for 15 minutes before being warmed to room temp for 2 hours. Solvent was evaporated and residue was carried on to the next step.

FTIR (thin film $/ \mathrm{NaCl}$) 3472, 2952, 2853, 1738, 1727, 1601, 1332, 1230, 1172, 1124, 1071, 1030, 919 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.55(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.21$ $(\mathrm{m}, 1 \mathrm{H}), 2.84-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.66(\mathrm{~s}$, $3 \mathrm{H})$; HRMS (ES+) $m / z 523.2337$ [calc'd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 523.2342$].

Mesylate $(0.003 \mathrm{~g}, 0.006 \mathrm{mmol})$ in dry THF $(1.0 \mathrm{~mL})$ was treated with excess $\mathrm{NaH}(0.002 \mathrm{~g})$ and stirred at room temperature for 8 hours before quenching with sat $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ and extraction with ethyl acetate ($3 \times 3.0 \mathrm{~mL}$). The organics were washed with brine, dried over MgSO_{4} and concentrated. Purification using silica gel (20% EtOAc: hexanes) afforded ketone.

FTIR (thin film $/ \mathrm{NaCl}$) 2940, 2920, 2868, 1738, 1715, 1454, 1366, 1245, 1096, 1021, $954 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 2.73-$ $2.15(\mathrm{~m}, 8 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.78$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.5,170.8,169.8,134.3,131.7,130.2,128.4,72.6,68.1$, $55.3,51.2,44.0,34.5,33.3,33.0,32.6,30.0,29.1,28.0,27.5 .26 .5,21.7,21.0,15.4$; HRMS (ES+) m / z 427.2476 [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na}) 427.2460$].

A dry methylene chloride $(1.0 \mathrm{~mL})$ solution of oxalyl chloride $(0.03 \mathrm{~mL}, 0.34 \mathrm{mmol})$ was cooled to $78^{\circ} \mathrm{C}$ before slow addition of dimethyl sulfoxide $(0.05 \mathrm{~mL}, 0.70 \mathrm{mmol})$ in methylene chloride $(0.5 \mathrm{~mL})$. Ten min later a solution of diol $(0.015 \mathrm{~g}, 0.037 \mathrm{mmol})$ in methylene chloride (1.5 mL) was added dropwise and stirred 15 minutes. Triethylamine ($0.2 \mathrm{~mL}, 1.4 \mathrm{mmol}$) was added and the mixture was warmed to $0^{\circ} \mathrm{C}$ over 30 minutes. The reaction was quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with methylene chloride ($3 \times 5.0 \mathrm{~mL}$). The extracts were dried over MgSO_{4} and evaporated. Purification using silica gel ($10 \%-25 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded ketone ($0.012 \mathrm{~g}, 80 \%$).

FTIR (thin film/ NaCl) 3483, 2930, 2877, 1738, 1432, 1375, 1241, 1028, $930 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.15(\mathrm{~m}, 7 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71$ (s, 3H), 1.27 (s, 3H), 1.17 (s, 3H), 0.74 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.5,170.8,169.8$, $135.4,132.3,130.6,130.1,79.2,73.7,67.1,54.0,38.1,35.4,35.0,34.6,31.7,29.7,28.3,26.5,22.9$, 22.4, 21.6, 21.0, 17.1; HRMS (ES+) $m / z 443.2413$ [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 443.2410$].

To a methanol $(3.0 \mathrm{~mL})$ solution of ketone $(0.012 \mathrm{~g}, 0.029 \mathrm{mmol})$ was added $\mathrm{NaBH}_{4}(0.011 \mathrm{~g}, 0.290$ mmol). This reaction mixture was stirred at room temperature for 30 minutes before being quenched with $1 \mathrm{M} \mathrm{HCl}(3.0 \mathrm{~mL})$ and stirred for additional 30 minutes. At this point brine $(4.0 \mathrm{~mL})$ was added and the reaction mixture was extracted with ethyl acetate ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification using silica gel chromatography (50% $\mathrm{EtOAc} /$ hexanes) afforded 0.010 g of the product (80%).

FTIR (thin film/NaCl) 3482, 2921, 2851, 1737, 1454, 1376, 1245, 1078, 1027, $956 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.91(\mathrm{bs}, 2 \mathrm{H}), 2.77-2.13(\mathrm{~m}, 8 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.84(\mathrm{~m}$, $2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ES+) m/z 445.2577 [calc'd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 445.2566$].

Diol ($0.007 \mathrm{~g}, 0.017 \mathrm{mmol}$) was dissolved in methylene chloride $(1.5 \mathrm{~mL})$, and then treated with DMAP $(0.081 \mathrm{~g}, 0.663 \mathrm{mmol})$ and thiophosgene $(0.020 \mathrm{~g}, 0.174 \mathrm{mmol})$ dissolved in 0.5 mL methylene chloride. This reaction mixture was heated at $45^{\circ} \mathrm{C}$ for 20 hours at which point SiO_{2} was added (color of solution changes from red to yellow) and stirring was continued for additional 10 minutes before passing the crude reaction mixture through a silica plug using $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ as the eluent. Further purification using silica gel chromatography ($33 \% \mathrm{EtOAc} /$ hexanes) afforded thiocarbonate ($0.007 \mathrm{~g}, 91 \%$).

FTIR (thin film/NaCl) 2953, 2884, 1800, 1734, 1436, 1368, 1300, 1240, 1096, 1025, 951, 917, $852 \mathrm{~cm}^{-}$
${ }^{1}$; ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H})$, $4.46(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.18(\mathrm{~m}, 7 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ES+) m/z 487.2125 [calc'd for $\left.\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na}) 487.2130\right]$.

Thiocarbonate $(0.007 \mathrm{~g}, 0.015 \mathrm{mmol})$, dissolved in neat triethyl phosphate ($1.5 \mathrm{~mL}, 7.7 \mathrm{mmol}$) was heated at $160^{\circ} \mathrm{C}$ for 15 hours. The reaction mixture was cooled to room temperature and all excess triethyl phosphate was removed in vacuo. Purification using silica gel chromatography (12% $\mathrm{EtOAc} /$ hexanes) afforded 0.005 g of product (86%).

FTIR (thin film $/ \mathrm{NaCl}$) 2921, 2854, 1735, 1661, 1434, 1371, 1240, 1021, 957, 803, $737 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.08(\mathrm{~m}, 7 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.54$ $(\mathrm{s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\delta 171.0,170.0,137.4,134.3,132.1,129.6,128.7,127.8$, $78.6,68.6,54.8,44.6,42.8,39.2,36.6,33.3,29.5,28.7,26.3,23.9,21.9,21.3,16.5,15.0$; HRMS (EI) $m / z \quad 411.2524$ [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na}) 411.2511$]. Carbon shifts extracted from HSQC and HMBC spectra.

Triene starting material $(0.002 \mathrm{~g}, 0.005 \mathrm{mmol})$ was dissolved in acetone $(1.0 \mathrm{~mL})$ and treated with a freshly prepared DMDO solution $(0.05 \mathrm{~mL}, 0.1 \mathrm{M}$ in acetone, 0.005 mmol$)$. The C5-C6 olefin is rapidly consumed (5 minutes), while the C9-C12 olefin takes another 4 hours to be oxidized. The solvent was evaporated the crude reaction mixture was carried on to the next step.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=4.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, 3.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}$, $3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35$ $(\mathrm{s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ES+) $\mathrm{m} / \mathrm{z} 443.2402$ [calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6}$ $(\mathrm{M}+\mathrm{Na}) 443.2410]$.

Bis-epoxide starting material was dissolved in dry THF (0.6 mL) and treated consecutively with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{HCOOH}\left(0.005 \mathrm{~g} \mathrm{Et}_{3} \mathrm{~N}\right.$ and $0.002 \mathrm{~g} \mathrm{HCOOH}, 0.050 \mathrm{mmol}$ dissolved in 0.2 mL THF$)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.006 \mathrm{~g}, 0.005 \mathrm{mmol}$ dissolved 0.1 mL THF $)$. This reaction mixture was heated at $75^{\circ} \mathrm{C}$ for 15 hours before being evaporated to dryness. Purification using silica gel chromatography (33% EtOAc/hexanes) afforded exo-olefin product ($0.001 \mathrm{~g}, 55 \%$).

FTIR (thin film/ NaCl) 2993, 2920, 2854, 1734, 1600, 1462, 1451, 1248, 1235, 1078, 1018, 957, 889 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.52(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.62-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.02(\mathrm{~m}, 8 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}$, $3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\delta 168.6,127.9,111.7,70.4,65.1,64.7$, $61.2,60.4,58.8,43.2,40.0,37.6,36.8,32.9,31.3,30.4,30.2,30.1,24.5,20.7,18.7,15.9$; HRMS (ES+) $m / z 363.2538$ [calc'd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 363.2535$]. Carbon chemical shifts extracted from HSQC and HMBC data.

Diene starting material $(0.014 \mathrm{~g}, 0.036 \mathrm{mmol})$ was dissolved in dry DCM and cooled to $0^{\circ} \mathrm{C}$. A freshly prepared solution of mCPBA $(0.013 \mathrm{~g}, 0.072 \mathrm{mmol})$ in 2.0 mL of DCM was added drop-wise over 10 minutes and the reaction was stirred an additional 20 minutes. The reaction was then quenched by adding 3.0 mL of saturated sodium thiosulfate, extracted with DCM , and dried over sodium sulfate. Purification using silica gel chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded monoepoxide (0.006 g , 40\%).
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.14(\mathrm{~m}, 9 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H})$.

Bis-acetate epoxide ($0.024 \mathrm{~g}, 0.059 \mathrm{mmol}$) was dissolved in THF (3.0 mL) and cooled to $0^{\circ} \mathrm{C}$. Freshly distilled pyridine (0.065 g) was added followed by OsO_{4} in THF $(0.693 \mathrm{~g}, 1.15 \mathrm{eq}, 0.9 \mathrm{~mL})$ and the reaction was stirred for 10 min and then the bath was removed. After 18 hours at room temperature, $\mathrm{NaHSO}_{3}(2.0 \mathrm{~mL})$ and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ were added and stirred 24 hours to ensure complete quenching of the osmium. The reaction was then concentrated and purified with silica gel chromatography (50% $\mathrm{EtOAc} /$ hexanes) to give epoxy-diol ($0.024 \mathrm{~g}, 93 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=15.8,9.3,1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.04$ $(\mathrm{s}, 3 \mathrm{H}), 1.99-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$.

Diol starting material ($0.024 \mathrm{~g}, 0.055 \mathrm{mmol}$) was dissolved in dry DCM $(1.2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Freshly distilled pyridine ($0.086 \mathrm{~g}, 20 \mathrm{eq}$.) was added followed by $\mathrm{MsCl}(0.093 \mathrm{~g}, 15 \mathrm{eq}$.) in $\mathrm{DCM}(0.3$ mL). The reaction was maintained 10 minutes before the bath was removed and stirred 2 additional hours. The volatiles were then removed and the residue was purified using silica gel chromatography ($50 \% \mathrm{EtOAc} /$ hexanes) to give mono mesylate ($0.028 \mathrm{~g}, 99 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=9.42 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ $(\mathrm{m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.02(\mathrm{~m}, 5 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}$, $3 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H})$.

Mono mesylate ($0.028 \mathrm{~g}, 0.054 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$ at room temperature. Excess DBU ($0.058 \mathrm{~g}, 7 \mathrm{eq}$.) was then added and the reaction was stirred 12 hours until starting material was consumed. The solvent was removed and the residue was purified using silica gel chromatography $(50 \% \mathrm{EtOAc} /$ hexanes $)$ to give desired bis epoxide $(0.007 \mathrm{~g}, 33 \%)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.61(\mathrm{~m}, 4 \mathrm{H})$, 1.53-1.39 (m, 2H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathbf{C}$ NMR $\delta 170.8,170.0$, $131.0,130.7,70.7,67.2,64.4,62.6,59.8,58.5,51.5,34.1,33.3,32.6,29.8,28.4,27.3,25.0,22.9,22.3$, 22.3, 22.2, 21.5, 20.9. Carbon chemical shifts extracted from HSQC and HMBC data.

Bis-epoxide ($0.004 \mathrm{~g}, 0.008 \mathrm{mmol}$) was added to a flame dried flask along with freshly prepared $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and degassed THF $(1.2 \mathrm{~mL})$. To this solution was added a solution of formic acid $(3.2 \mu \mathrm{~L}$, $0.08 \mathrm{mmol})$, triethylamine ($0.01 \mathrm{~mL}, 0.08 \mathrm{mmol}$) and THF $(0.6 \mathrm{~mL})$. This mixture was heated at $75^{\circ} \mathrm{C}$ for 18 hours. The solvent was then removed and the residue was purified using silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexane) to give pure exo olefin ($0.003 \mathrm{~g}, 98 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.63(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{dd}, \mathrm{J}$ $=3.4,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=4.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=6.0,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.16(\mathrm{~m}, 8 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~s}$, $3 \mathrm{H})$.

Exo-olefin ($0.003 \mathrm{~g}, 0.008 \mathrm{mmol}$) was dissolved in dry benzene $(3.5 \mathrm{~mL})$ and then freshly distilled pyridine ($0.07 \mathrm{~mL}, 0.83 \mathrm{mmol}$) was added at room temperature. To this was added pentafluorobenzene selenic acid and the reaction was heated at $80^{\circ} \mathrm{C}$ for 2 hrs . The solvent was then removed and the residue was purified using silica gel chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield an isomer of hypoestoxide $(0.001 \mathrm{~g})$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H})$, $2.76(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dd}, \mathrm{J}=1.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.00(\mathrm{~m}$, $2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, 3H);); ${ }^{13}$ C NMR $\delta 198.7,169.9,144.4,127.1,75.7,63.8,61.9,60.4,58.5,55.5,42.1,35.5,34.3,33.3$, 29.2, 27.5, 26.1, 24.1, 23.9, 23.4, 22.9, 21.7. HRMS (ES+) m/z 399.2159 [calc'd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})$ 399.2147]. Carbon chemical shifts extracted from HSQC and HMBC data.

Ketone starting material $(0.058 \mathrm{~g}, 0.120 \mathrm{mmol})$ was dissolved in dry THF $(2.5 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ when an ethereal solution of $\mathrm{MeMgBr}(0.43 \mathrm{~mL}, 3.0 \mathrm{M}, 1.28 \mathrm{mmol})$ was added dropwise. After 15 minutes the reaction was allowed to warm to room temperature over an hour. This mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, acidified to $\mathrm{pH} 1(\mathrm{HCl})$, and stirred 10 minutes. Addition of NaCl and extraction with EtOAc ($8 \times 8.0 \mathrm{~mL}$) followed by drying over MgSO_{4} and concentration gave yellow oil that was purified over silica gel ($15 \% \mathrm{EtOAc} /$ hexanes) to give product $(0.060 \mathrm{~g}, 60 \%)$.

FTIR (thin film/NaCl) 3392, 2957, 2940, 2871, 1453, 1386, 1180, 1102, 1043, 993, 968, $910 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H})$, $4.94(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, \mathrm{J}=10.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-1.77(\mathrm{~m}, 16 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9,134.8,133.0,131.0,130.2,128.4,124.9,114.3,74.2,70.1,51.8,48.4,48.3$, 39.5, 37.3, 36.2, 34.7, 33.4, 32.4, 30.9, 30.4, 29.0, 27.4, 27.3, 26.4, 22.7, 20.1, 15.8, 15.7, 13.7; HRMS $(\mathrm{ES}+) m / z 467.3867$ [calc'd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 467.3865$].

Pyridine ($0.17 \mathrm{~mL}, 2.03 \mathrm{mmol}$) was added to the diol ($0.060 \mathrm{~g}, 0.140 \mathrm{mmol}$) dissolved in methylene chloride (5.0 mL). This mixture was cooled to $-78^{\circ} \mathrm{C}$ and a methylene chloride (3.0 mL) solution of triphosgene ($0.040 \mathrm{~g}, 0.140 \mathrm{mmol}$) was added slowly. The reaction was warmed to room temperature (1 hour) and stirred for 18 hours. The reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$, and acidified using $1 \mathrm{M} \mathrm{HCl}(1.0 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted using ethyl acetate ($6 \times 5.0 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Purification with silica gel ($16 \% \mathrm{EtOAc} /$ hexanes) afforded the carbonate product ($0.048 \mathrm{~g}, 75 \%$).

FTIR (thin film/NaCl) 2955, 2926, 2872, 1735, 1451, 1368, 1294, 1215, 1166, 1085, 969, 909, $770 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.18(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}$, $1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.19-1.73(\mathrm{~m}, 12 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.52-$ $1.23(\mathrm{~m}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathbf{C}$ NMR $\delta 150.3,139.0,135.2,132.2,131.0$, $129.0,128.3,124.9,114.5,79.5,79.1,43.6,39.5,39.2,35.9,34.7,33.6,32.9,31.0,30.3,29.9,29.3$, $27.5,26.9,25.6,24.0,23.7,22.9,16.7,16.1,13.9$; HRMS (ES+) $m / z 471.3853$ [calc'd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{3}$ $\left.\left(\mathrm{M}+\mathrm{H}^{+}\right) 471.3838\right]$.

The metathesis precursor $(0.046 \mathrm{~g}, 0.098 \mathrm{mmol})$ was dissolved in dry toluene $(204.0 \mathrm{~mL})$. This mixture was brought to reflux, with a stream of nitrogen constantly bubbling through the solution, before addition of Grubbs second generation catalyst $(0.025 \mathrm{~g}, 0.030 \mathrm{mmol})$. After 8 minutes the crude reaction mixture was immersed in an ice-water bath and the before mentioned isocyanide (0.006 g , 0.054 mmol) in 0.5 mL of methanol was added to render the catalyst inactive by stirring 15 min at room temp. The cold toluene solution was then filtered through a plug of silica washing with 30% EtOAc/hexanes. The solvent was evaporated and the crude mixture was purified on silica using 10% $\mathrm{EtOAc} /$ hexanes affording the macrocycle $(0.013 \mathrm{~g}, 40 \%)$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.55(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, \mathrm{J}=14.1,11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52(\mathrm{~d}, 14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-1.89(\mathrm{~m}, 13 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$, $0.98(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR $\delta 154.5,135.9,132.8,128.8,125.2,86.1,77.34,56.4,44.1,43.8,38.2,35.6$, $33.5,32.0,30.5,29.7,27.6,25.3,24.2,24.1,15.2$; HRMS (EI+) m/z 332.2347 [calc'd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}$ $(\mathrm{M}+)$ 332.2352]. Carbon chemical shifts extracted from HSQC and HMBC_data.

To a dioxane $(1.5 \mathrm{~mL})$ solution of the carbonate $(0.024 \mathrm{~g}, 0.074 \mathrm{mmol})$ was added $1 \mathrm{M} \mathrm{NaOH}(1.5 \mathrm{~mL})$. This mixture was stirred vigorously at room temperature for 6 hours, at which point it was diluted with brine (2.0 mL), saturated with solid NaCl and extracted with ethyl acetate ($5 \times 3.0 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated. Purification using silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) gave diol product ($0.018 \mathrm{~g}, 71 \%$).

FTIR (thin film/ NaCl) 3316, 2947, 2927, 2870, 1653, 1558, 1540, 1457, 1341, 1109, 1000, 913, 801 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}$, $\mathrm{J}=14.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-1.79(\mathrm{~m}, 15 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.2,132.3,129.9,125.8,75.8,71.7,63.0,47.9,44.8,41.0,36.4$, 35.9, 32.2, 29.7, 24.8, 24.5, 24.4, 24.1, 22.9, 15.3; HRMS (ES+) $\mathrm{m} / \mathrm{z} 329.245$ [calc'd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{Na})$ 329.2457].

To a dichloromethane $(1.5 \mathrm{~mL})$ solution of the diol $(0.005 \mathrm{~g}, 0.016 \mathrm{mmol})$ was added dimethyl amino pyridine $(0.002 \mathrm{~g}, 0.016 \mathrm{mmol})$ and pyridine $(0.013 \mathrm{~g}, 0.163 \mathrm{mmol})$. A stock solution of mesyl chloride $(0.019 \mathrm{~g}, 0.163 \mathrm{mmol})$ was next added at room temperature and was stirred 20 hours. The reaction mixture was concentrated in vacuo and purified using silica gel chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded mesylate ($0.003 \mathrm{~g}, 51 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.51(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}=10.1,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-$ $1.83(\mathrm{~m}, 15 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H})$.

A solution of naphthalene $(1.300 \mathrm{~g}, 0.010 \mathrm{~mol})$ and THF $(10 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 10 minutes. Freshly cleaned lithium wire was next added to the reaction and allowed to stir 2 hours at which point it had assumed a dark green color. An aliquot of this was transferred to a fresh vial and cooled to $-78^{\circ} \mathrm{C}$ under nitrogen. Next starting mesylate ($0.002 \mathrm{~g}, 0.005 \mathrm{mmol}$) was dissolved in dry THF (0.5 mL) and added slowly to the reaction mixture over 3 minutes. The reaction was allowed to stir 10 minutes and then it was quenched with saturated ammonium chloride. The reaction was brought to room temp and extracted with ethyl acetate ($4 \times 2.0 \mathrm{~mL}$) and dried over MgSO_{4}. The extracts were concentrated and purified with silica gel chromatography to give pure deoxygenated product ($1.4 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 2.50-1.77(\mathrm{~m}, 17 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\delta 135.0$, 134.9, 128.6, 125.7, 73.4, 57.8, 44.6, $40.6,37.4,36.5,34.6,32.2,29.7,29.6,27.2,24.9,24.6,24.0,22.9,15.2$; HRMS (EI+) $m / z 290.2613$ [calc'd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}(\mathrm{M}+)$ 290.2610]. Carbon chemical shifts extracted from HSQC and HMBC data.

A1.2 NMR Data for Chapter 1

\square

Spectral Confirmation of Incorrect C12,

Olefin Geometery (Z) and Atropisomer

HSQC (1.37)

HMBC (1.37)

Carbon and Proton Assignments From HSQC and HMBC Data (1.37):

All carbons chemical shifts and the chemical shifts of the protons that are attached to them have been mapped out using both HSQC and HMBC techniques. These values can then be used to map out stereochemical relationships given NOE correlations.

C	$\delta \mathrm{ppm}$	HMQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	57.0	2.32	$6.07,4.70,2.59,0.95,0.79$
2	33.6		$2.32,2.24,0.95,0.79$
3	40.6	2.07	$6.07,2.32,1.70,0.95,0.79$
4	24.2	$2.28,1.99$	1.70
5	125.0	5.45	1.70
6	135.2		$2.28,1.70$
7	32.1	$2.21,1.92$	$5.45,2.28,1.70$
8	28.0	$2.24,1.69$	6.07
9	132.4	5.18	$2.59,2.38,1.71$
10	131.1		$2.59,1.69$
11	42.8	$2.59,2.38$	$5.18,4.70,2.32,1.69$
12	80.7	4.70	$2.59,2.32,0.95,0.79$
15	22.8	1.70	5.45
16	15.0	1.71	$5.18,2.59$
17	29.6	1.24	
18	133.2	6.07	$4.34,2.32$
19	128.6		$4.70,4.34,2.59,2.38,2.32$
20	75.7	$4.39,4.34$	6.07
21	22.4	0.79	0.95
22	25.1	0.95	0.79
23	154.7		$4.70,4.34$

Table A1.1 2D-NMR Data for 1.37

NOESY (1.37)

Important NOE Correlations For Proving Stereochemical Assignments:
Pictured are the relevant NOE correlations to prove the stereochemical assignments for the metathesis product.

$$
\begin{array}{ll}
\text { C1-C12 = axial } & \mathrm{C} 9-\mathrm{C} 10=\text { E-olefin } \\
\text { C3-C4 = equatorial } & \mathrm{C} 5-\mathrm{C} 6=\mathrm{Z} \text {-olefin } \\
\text { Incorrect atropisomer } & \mathrm{C} 12=\text { incorrect }
\end{array}
$$

$\delta \mathrm{ppm}$	HMBC $(\delta \mathrm{ppm})$
135.4	$4.13,3.95,2.13$
134.9	$4.16,2.52,1.71$
131.7	$2.15,1.73$
129.9	$4.13,3.95,2.13$
129.7	$2.13,1.73$
124.2	1.73
69.6	0.76
69.3	2.35
59.8	$0.96,0.76$
47.7	$2.12,1.73$
40.4	$2.13,1.71,0.96,0.76$
35.0	$1.09,0.76$
34.0	$2.12,0.96,0.76$
32.3	$1.71,0.96$
26.8	0.76
24.2	1.71
23.4	$1.60,0.96$
22.8	0.76
21.8	$2.13,0.96$
15.1	5.10

Table A1.2 2D-NMR Data for 1.38

Carbon Chemical Shifts Extracted From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	54.0	2.08	4.51
2	36.7		0.77
3	42.2	1.41	
4	30.1	1.04	
5	130.7	5.13	
6	135.5		1.71
7	41.7	$2.06,1.77$	
8	24.3	$2.36,2.28$	1.71
9	130.8	5.35	
10	132.6		5.37
11	43.8	$2.48,2.09$	
12	72.9	5.37	2.48
13	170.0		$5.37,2.01$
14	21.6	2.01	
15	23.0	1.71	
16	15.1	1.75	2.48
17	32.5	$2.30,1.73$	
18	129.7	5.94	
19	131.3		1.73
20	68.6	$4.62,4.51$	
21	21.6	0.77	
22	26.3	0.97	5.37
23	170.8		$4.62,4.51,2.05$
24	21.0	2.05	

Table A1.3 2D-NMR Data for 1.38-(Bis-Acetate)

Carbon Chemical Shifts Extracted
From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
	29.3	$2.18,1.89$	
	28.5	$1.72,1.35$	2.90
	27.3	$1.98,1.38$	
	26.7	1.14	
	25.5	$2.09,1.46$	2.70
	22.1	1.38	
	21.3	0.83	
	16.4	1.46	1.72
1	53.4	2.09	$4.49,1.14$
2	34.7		$1.14,0.73$
3	35.4	1.66	
5	65.9	2.70	$1.72,1.46$
6	59.0		1.37
9	63.7	2.90	1.73
10	59.7		$5.41,1.45$
11	42.5	$2.07,1.73$	
12	71.1	5.41	
13	169.9		$2.03,5.41$
14	21.4	2.03	
18	127.6	5.91	
19	132.3		5.41
20	67.8	$4.55,4.49$	
23	170.5		$2.05,4.49$
24	21.0	2.05	1.14

Table A1.4 2D-NMR Data for $\mathbf{1 . 3 9}$

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	60.0	2.15	$1.95,1.50$
2	35.7		$1.10,0.80$
3	38.0	1.77	$2.96,1.10,0.80$
4	25.3	$2.10,1.49$	
5	64.4	2.98	$1.68,1.40$
6	59.2		1.40
7	27.0	$1.96,1.43$	1.40
8	28.5	$1.67,1.34$	
9	65.9	2.96	$2.15,1.50$
10	59.6		$1.10,0.80$
11	43.1	$2.15,1.95$	1.50
12	71.1	5.35	$2.15,1.95$
13	170.4		2.05
14	21.8	2.05	
15	22.2	1.40	
16	16.7	1.50	1.95
17	26.4	$1.74,1.39$	
18	33.2	$2.42,2.36$	$4.99,4.68$
19	143.4		$2.15,5.35$
20	116.1	$4.99,4.68$	
21	22.2	0.8	1.10
22	27.2	1.10	0.80

Table A1.5 2D-NMR Data for 1.40

Carbon Chemical Shifts Extracted From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	58.7	2.53	$1.86,1.22,0.94$
2	36.2		$1.22,0.94$
3	35.1	1.86	$1.22,0.94$
4	31.6	1.26	1.29
5	62.7	2.87	1.39
6	59.2		1.39
7	27.2	$2.01,1.37$	1.39
8	22.8	1.29	
9	65.7	2.71	$2.06,1.47$
10	59.6		$2.06,1.47$
11	42.3	$2.06,1.26$	
12	70.6	5.40	
13	169.8		2.08
14	21.4	2.07	
15	22.0	1.39	
16	16.4	1.47	
17	41.1	$2.60,2.24$	
18	199.1		$6.22,5.31,2.53$
19	141.5		$5.40,2.53$
20	127.7	$6.22,5.31$	
21	21.5	0.94	1.22
22	26.3	1.22	0.94

Table A1.6 2D-NMR Data for 1.41

Carbon Chemical Shifts Extracted
From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
	134.8		1.72
	133.8		$2.25,2.51$
	130.1		
	127.3	5.76	$2.01,1.72$
	125.5		1.72
	57.9		$1.16,0.74$
	42.7		
	40.7		$1.16,0.74$
	35.6		$1.16,0.74$
	32.0		
	29.7	1.26	
	29.3	0.76	0.76
	27.0	1.72	
	26.8	1.81	
	24.6	4.37	2.25
	22.9		2.51
12	17.6	75.1	$4.10,3.98$
18	126.9		
20	67.1		

Table A1.7 2D-NMR Data for 1.42

Carbon Chemical Shifts Extracted From HSQC and HMBC Spectra

Carbon Chemical Shifts Extracted
From HSQC and HMBC Spectra

Spectral Confirmation for Correction of: C12 and Olefin Geometry (EE)

HSQC-AD (1.45)

HMBC-AD (1.45)

Carbon and Proton Assignments From HSQC and HMBC Data:

All carbons chemical shifts and the chemical shifts of the protons that are attached to them have been mapped out using both HSQC and HMBC techniques. These values can then be used to map out stereochemical relationships given NOE correlations.

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	54.8	2.00	0.77
2	36.6		0.77
3	42.8	1.65	$1.52,0.77$
4	29.5	$1.80,1.76$	$5.36,1.52$
5	129.6	5.36	
6	134.3		$2.16,2.04,1.52$
7	39.2	$2.16,2.04$	$5.36,2.12,1.52$
8	26.3	$2.35,2.12$	$1.69,1.52$
9	127.8	5.08	1.69
10	132.1		$5.22,2.73,2.11,1.69$
11	44.6	$2.73,2.11$	1.69
12	78.6	5.22	
13	170.0		$5.22,2.04,2.01$
14	21.9	2.01	
15	15.0	1.52	5.36
16	16.5	1.69	
17	33.3	$2.24,1.77$	
18	128.7	5.63	$4.51,4.38,2.24,2.00$
19	137.4		$5.22,4.51,4.38,2.00$
20	68.6	$4.51,4.38$	
21	23.9	0.77	
22	28.7	1.28	0.77
23	171.0		$4.51 .4 .38,2.02$
24	21.3	2.02	

Table A1.8 2D-NMR Data for 1.45

NOESY (1.45)

Important NOE Correlations For Proving Stereochemical Assignments:

Pictured are the relevant NOE correlations to prove the stereochemical assignments. This shows correct C12 and olefin geometries (EE).

Carbon Chemical Shifts Extracted
From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
	40.0		$0.89,0.61$
	36.8		0.89 .0 .61
	31.3	$1.23,1.20$	
	30.2	$1.98,1.36$	
	30.1	$1.56,1.31$	
1	61.2	1.86	$0.89,0.61$
5	64.7	2.76	1.02
6	58.8		1.02
9	65.1	2.81	$2.25,1.56$
10	60.4		1.56
11	43.2	$2.25,2.15$	1.54
12	70.4	5.60	2.25
13	168.6		1.68
14	20.7	1.68	
15	15.9	1.02	
16	18.7	1.53	
17	32.9	$1.78,0.82$	
18	37.6	$1.93,1.04$	
19	127.9		4.64
20	111.7	$4.64,4.53$	
21	24.5	0.61	0.89
22	30.4	0.89	0.61

Table A1.9 2D-NMR Data for 1.46

Carbon Chemical Shifts Extracted
From HSQC and HMBC Spectra

HSQC-AD (1.49)

HMBC-AD (1.49)

Carbon and Proton Assignments From HSQC and HMBC Data:

All carbons chemical shifts and the chemical shifts of the protons that are attached to them have been mapped out using both HSQC and HMBC techniques. These values can then be used to map out stereochemical relationships given NOE correlations.

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	51.5	2.11	$5.94,5.56,4.65,4.56$
2	34.1		5.56
3	32.6	2.42	$5.94,2.93$
4	28.4	$1.64,1.43$	$2.93,1.33$
5	64.4	2.93	1.33
6	59.8		$2.93,1.33$
7	27.3	$1.87,1.46$	$2.82,1.33$
8	22.9	2.00	2.82
9	62.6	2.82	1.29
10	58.5		$5.56,1.29$
11	33.3	$2.37,1.90$	1.29
12	70.7	5.56	
13	170.0		$5.56,2.04$
14	21.5	2.04	
15	22.3	1.33	2.93
16	22.3	1.29	2.82
17	29.8	$2.32,1.76$	5.94
18	131.0	5.94	$5.56,4.56,1.43,1.08$
19	130.7		5.56
20	67.2	$4.65,4.56$	5.94
21	22.2	0.74	
22	25.0	1.08	
23	170.8		$2.05,4.65,4.56$
24	20.9	2.04	

Table A1.10 2D-NMR Data for 1.49

NOESY (1.49)

Important NOE Correlations For Proving Stereochemical Assignments:

Pictured are the relevant NOE correlations to prove the stereochemical assignments. This shows correct C12 and the unnatural epoxide geometries (ZZ).

Carbon Chemical Shifts Extracted From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	55.5	2.76	$6.33,5.53,1.85,1.16,0.85$
2	35.5		$2.76,2.65,1.16,0.85$
3	33.3	2.67	$2.76,2.24,1.16,0.85$
4	29.2	$1.72,1.63$	$2.92,2.24$
5	63.8	2.92	1.32
6	60.4		1.32
7	27.5	$1.87,1.51$	$1.88,1.32$
8	23.9	$2.09,1.88$	1.51
9	61.9	2.82	1.21
10	58.5		$2.49,1.85,1.21$
11	34.3	$2.49,1.85$	$2.76,1.21$
12	75.7	5.35	$2.76,2.49,1.85$
13	169.9		2.05
14	21.7	2.05	
15	23.4	1.32	1.51
16	22.9	1.21	2.49
17	42.1	$2.65,2.24$	1.63
18	198.7		$6.33,5.53,2.65,2.24$
19	144.4		$6.33,2.76$
20	127.1	$6.33,5.53$	$2.76,2.09$
21	24.1	0.85	$2.76,1.16$
22	26.1	1.16	0.85

Table A1.11 2D-NMR Data for $\mathbf{1 . 5 0}$

Carbon Chemical Shifts Extracted
From HSQC and HMBC Spectra

Carbon Chemical Shifts Extracted From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC ($\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
	135.9		$1.72,1.43$
	132.8	5.38	
	128.8		$2.19,1.73$
	125.2	5.54	
	43.8	$3.03,2.52$	
	38.2	2.05	
	33.5	1.61	
	32.0	$2.26,1.95$	
	30.5	1.43	
	29.7	1.26	
	27.6	1.00	
	25.3	2.16	
	24.2	0.98	
	24.1	$2.34,2.08$	
	15.2	1.72	
1	56.4	2.16	
2	35.6		0.98
3	44.1	2.14	
12	77.3	4.60	
19	86.1		1.61
23	154.5		4.60

Table A1.12 2D-NMR Data for 1.52-(Carbonate)

Spectral Confirmation of Verticillol Diol Stereochemistry

HSQC-AD (1.52)

HMBC-AD (1.52)

Carbon and Proton Assignments From HSQC and HMBC Data:

All carbons chemical shifts and the chemical shifts of the protons that are attached to them have been mapped out using both HSQC and HMBC techniques. These values can then be used to map out stereochemical relationships given NOE correlations.

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	62.0	1.91	$3.06,2.29,1.42,0.88$
2	43.7		$1.91,0.88$
3	34.8	2.09	$1.91,0.88$
4	24.3	$1.11,2.04$	$5.44,1.91$
5	124.7	5.44	1.66
6	134.2		$2.26,1.66$
7	31.3	$2.18,1.86$	5.44
8	23.0	$2.26,1.97$	1.68
9	128.8	5.24	$3.06,2.29$
10	131.2		$3.06,2.29$
11	47.0	$2.29,3.06$	$5.24,1.91$
12	70.7	4.06	$3.06,2.29,1.91,0.88$
15	21.9	1.66	5.44
16	14.3	1.68	5.24
17	35.6	$1.61,1.12$	1.96
18	40.3	$1.66,1.96$	$1.91,1.42$
19	74.9		$1.91,1.66,1.42$
21	23.8	0.88	0.90
22	28.5	0.90	0.88
24	35.4	1.42	$1.96,1.91$

Table A1.13 2D-NMR Data for $\mathbf{1 . 5 2}$

NOESY (1.52)

Important NOE Correlations For Proving Stereochemical Assignments:

Pictured are the relevant NOE correlations to prove the stereochemical assignments. This shows incorrect C19 and C12 stereochemistry and incorrect olefin geometry (EZ).

$$
\begin{array}{ll}
\text { C1-C12 }=\text { axial } & \text { C9-C10 }=\text { E-olefin } \\
\text { C3-C4 }=\text { equatorial } & \text { C5-C6 }=\text { Z-olefin } \\
\text { Incorrect atropisomer } & \mathrm{C} 12=\text { incorrect } \\
\mathrm{C} 19=\text { incorrect }
\end{array}
$$

Carbon Chemical Shifts Extracted From HSQC and HMBC Spectra

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
	135.0		1.65
	134.9		1.73
	128.6	5.24	1.65
	125.7	5.52	1.73
	40.6	$1.80,1.72$	1.40
	37.4	$2.43,2.17$	1.65
	32.2	$2.87,1.91$	1.73
	29.7	0.92	
	29.6	$1.32,1.26$	0.91
	27.2	2.01	
	24.9	0.91	0.92
	24.6	$2.33,2.05$	
	24.0	$2.08,1.79$	
	22.9	1.73	
	15.2	1.65	
1	57.8	1.51	$1.40,0.91$
2	36.5		$0.91,0.92$
3	44.6	2.14	0.92
19	73.4		1.40
24	34.6	1.40	

Table A1.14 2D-NMR Data for $\mathbf{1 . 5 3}$

Spectral Data for Authentic Hypoestoxide

2-D NMR analysis of Hypoestoxide is consistent with previously published crystal structure from isolation paper.

Hypoestoxide HSQC-AD (1.1)

Hypoestoxide HMBC-AD (1.1)

Carbon and Proton Assignments From HSQC and HMBC Data:

All carbons chemical shifts and the chemical shifts of the protons that are attached to them have been mapped out using both HSQC and HMBC techniques. These values can then be used to map out stereochemical relationships given NOE correlations.

C	$\delta \mathrm{ppm}$	HSQC $(\delta \mathrm{ppm})$	HMBC $(\delta \mathrm{ppm})$
1	46.7	2.51	$6.05,5.66,1.15,1.04$
2	37.3		$2.62,2.51,1.90,1.15,1.04$
3	45.0	1.98	$2.86,2.62,1.90,1.15,1.04$
4	31.6	$1.90,1.90$	$2.86,2.62$
5	62.2	2.59	1.27
6	62.3		
7	36.2	$2.18,1.20$	$1.98,1.27$
8	24.1	$1.98,1.43$	$2.45,2.19$
9	63.7	2.44	$1.98,1.43$
10	59.9		$1.80,1.43$
11	42.3	$2.19,1.80$	1.42
12	69.1	5.47	$2.19,1.80$
13	170.2		2.05
14	21.7	2.05	
15	16.3	1.27	
16	16.9	1.42	1.80
17	43.0	$2.86,2.62$	1.90
18	203.0		$6.04,5.66,2.86,2.62$
19	143.3		$6.05,2.52$
20	124.1	$6.04,5.66$	2.51
21	24.9	1.04	$2.52,1.15$
22	27.6	1.15	1.04

Table A1.15 2D-NMR Data for Authentic Hypoestoxide $\mathbf{1 . 1}$

Hypoestoxide NOESY (1.1)

Important NOE Correlations For Proving Stereochemical Assignments:
Pictured are the relevant NOE correlations to prove the stereochemical assignments for Hypoestoxide.

Hypoestoxide

Hypoestoxide Isomer Comparison

C	$\delta \mathrm{ppm}$	${ }^{1} \mathrm{H} \delta \mathrm{ppm}$
18	203.0	
13	170.2	
19	143.3	
20	124.1	6.04,5.66
12	69.1	5.47
9	63.7	2.44
6	62.3	
5	62.2	2.59
10	59.9	
1	46.7	2.51
3	45.0	1.98
17	43.0	2.86,2.62
11	42.3	2.19,1.80
2	37.3	
7	36.2	2.18,1.20
4	31.6	1.90,1.90
22	27.6	1.15
21	24.9	1.04
8	24.1	1.98,1.43
14	21.7	2.05
16	16.9	1.42
15	16.3	1.27

C	$\delta \mathrm{ppm}$	${ }^{1} \mathrm{H} \delta \mathrm{ppm}$
18	198.7	
13	169.9	
19	144.4	
20	127.1	6.33,5.53
12	75.7	5.35
5	63.8	2.92
9	61.9	2.82
6	60.4	
10	58.5	
1	55.5	2.76
17	42.1	2.65,2.24
2	35.5	
11	34.3	2.49,1.85
3	33.3	2.67
4	29.2	1.72,1.63
7	27.5	1.87,1.51
22	26.1	1.16
21	24.1	0.85
8	23.9	2.09,1.88
15	23.4	1.32
16	22.9	1.21
14	21.7	2.05

E,Z-epi-Atrop-Hypoestoxide (1.41)

C	$\delta \mathrm{ppm}$	${ }^{1} \mathrm{H} \delta \mathrm{ppm}$
18	199.1	
13	169.8	
19	141.5	
20	127.7	$6.22,5.31$
12	70.6	5.4

Table A1.16 Hypoestoxide Isomer Analysis

Proton Spectra Overlay For Isomers of Hypoestoxide

Figure A1.1 NMR Overlay of Hypoestoxide Isomers

A1.3 DFT Calculations for Chapter 1

Coordinates and calculated energies

DFT calculations were performed with the program Gaussian $03^{[1]}$ by using the WebMO interface (WebMO, version 6.0.003; www.webmo.net) for importing and constructing models.
[1]Gaussian 03 (Revision C.02); M. J. Frisch,G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

			Uncorrected Energy (hartrees)	Corrected Energy (hartree)	Corrected Energy (kcal/mol)	Relative E(kcal/ mol)	Freq. $\left(\mathrm{cm}^{-1}\right)$
Hypoestoxide	B3LYP	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$	-1233.994224	-1233.54252	-774059.7832	0	
Atrop-hypo	B3LYP	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$	-1233.986218	-1233.535978	-774055.678	4.11	
TS-1	B3LYP	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$	-1233.892363	-1233.438121	-773994.2718	65.51	-112.6

Table A1.17 Calculated Energies for Atropisomers of Hypoestoxide

Hypoestoxide B3LYP/6-311+G(d,p)			
C1	. 0000000	0.00000000	0
C2	0.02583700	-0.68570800	1.36209000
C3	-1.00160500	-1.76657500	1.57880400
C4	-1.30489700	-2.65823700	0.38634200
C5	-1.26270600	-1.97804200	-0.99899100
C6	-0.00330600	-1.05954400	-1.16546100
C7	1.26101300	-1.94691600	-1.1377
H8	1.18400600	-2.73110800	-1.89734800
H	42012400	-2.42556300	-0.17028
H10	2.15400600	-1.36089300	-1.35681300
C11	-0.05894100	-0.37172100	-2.54407400
H12	0.89460800	0.09349400	-2
H13	-0.27504800	-1.11046100	-3.32190500
H14	-0.83198500	0.39865000	-2.59612400
C15	-2.64686800	-1.38090900	-1.37423000
C16	-3.33080200	-0.42096900	-0.41339500
C17	-3.87752000	0.92770900	-0.728
018	-4.73466300	-0.23090700	-0.66319100
C19	-4.17911300	1.90004400	0.40836000
C20	-3.29032400	3.14722900	0.55151800
C21	-1.88084400	2.87467400	1.03336600
C22	-0.61787600	3.17402000	0.31095100
C23	0.64565600	2.41397600	0.69
C24	0.96267800	1.18984300	-0.17995000
025	2.33445200	0.76947000	0.08633300
C26	3.31667500	1.31368300	-0.67164500
7	4.67311100	0.83887700	-0.21781800
H28	5.41511800	1.08325400	-0.97539200
H29	4.66438300	-0.23376800	-0.01921700
H30	4.93494400	1.34589600	0.71522600
031	3.11687100	2.08361500	-1.57990600
H32	0.93494800	1.50530100	-1.22007900
H3	1.48637700	3.11002700	0.60998600
H	0.56768900	2.13083700	1.74725800
C	-0.59694700	3.83655900	-1.04973200
H36	-1.48132900	4.45313600	-1.20517000
H	-0.53449000	3.10441800	-1.85939100
H38	0.28114000	4.48397900	-1.12627700
039	-1.08968800	4.02529500	1.37542800
H	-1.82286600	2.09005100	1.79063200
H41	-3.75307200	3.79547600	1.30423600
H42	-3.28242100	3.72682500	-0.37393800
H43	-4.18833700	1.34027500	1.34910300
H44	-5.20978900	2.23867600	0.25077400
C45	-3.75933500	1.53938900	-2.10694000
H46	-3.71740000	0.77238200	-2.87968900
H47	-4.63521800	2.16404900	-2.30810500
H48	-2.87229200	2.17183400	-2.19188100
H49	-3.13079200	-0.60706800	0.64174500
H50	-3.32976800	-2.23558200	-1.44890700
H51	-2.61091600	-0.95442800	-2.37709900
H52	-1.11982500	-2.78038200	-1.73218000
H53	-0.54156100	-3.44498400	0.42651900
H54	-2.26182000	-3.15385200	0.56548700
055	-1.50150600	-1.97526800	2.66685900
C56	0.87829800	-0.47285300	2.36985800
H57	0.75587400	-1.02977100	3.29190800
H58	1.70373400	0.22079500	2.30622700
H59	-0.98533900	0.47891900	-0.07214600

$018-4.73466300-0.23090700-0.66319100$
$-4.17911300 \quad 1.90004400 \quad 0.40836000$
-3.29032400
$\begin{array}{rrrr}\text { C22 } & -0.61787600 & 3.17402000 & 0.31095100 \\ \text { C23 } & 0.64565600 & 2.41397600 & 0.69775700\end{array}$
$\begin{array}{rrrr}\mathrm{C} 24 & 0.96267800 & 1.18984300 & -0.17995000 \\ 025 & 2.33445200 & 0.76947000 & 0.08633300\end{array}$
C26 $3.31667500 \quad 1.31368300-0.67164500$
C27 $\quad 4.67311100 \quad 0.83887700-0.21781800$
$\begin{array}{llll}\mathrm{H} 29 & 4.66438300 & -0.23376800 & -0.01921700\end{array}$
H30 4.93494400 1.34589600 0.71522600
$031 \quad 3.11687100 \quad 2.08361500-1.57990600$
$\begin{array}{rrrr}\text { H32 } & 0.93494800 & 1.50530100 & -1.22007900 \\ \text { H33 } & 1.48637700 & 3.11002700 & 0.60998600\end{array}$
$\begin{array}{llll}\text { H34 } & 0.56768900 & 2.13083700 & 1.74725800\end{array}$
$\begin{array}{lllll}\text { C35 } & -0.59694700 & 3.83655900 & -1.04973200 \\ \text { H36 } & -1.48132900 & 4.45313600 & -1.20517000\end{array}$
H37 $-0.53449000 \quad 3.10441800-1.85939100$
H38 $0.28114000 \quad 4.48397900-1.12627700$
$039-1.08968800 \quad 4.02529500 \quad 1.37542800$
$\begin{array}{llll}\text { H40 } & -1.82286600 & 2.09005100 & 1.79063200 \\ \text { H41 } & -3.75307200 & 3.79547600 & 1.30423600\end{array}$
$\begin{array}{lllll}\mathrm{H} 42 & -3.28242100 & 3.72682500 & -0.37393800\end{array}$
$\begin{array}{llll}\text { H43 } & -4.18833700 & 1.34027500 & 1.34910300 \\ \text { H44 } & -5.20978900 & 2.23867600 & 0.25077400\end{array}$
C45 -3.75933500 $1.53938900-2.10694000$
$\begin{array}{llll}\text { H47 } & -4.63521800 & 2.16404900 & -2.30810500\end{array}$
H48 -2.87229200 $2.17183400-2.19188100$
H49 $-3.13079200-0.60706800 \quad 0.64174500$
H51 $-2.61091600-0.95442800-2.37709900$
H52 -1.11982500 -2.78038200 -1.73218000
H53 -0.54156100 -3.44498400 0.42651900
H54 -2.26182000 -3.15385200 0.56548700
$\begin{array}{lllll}C 56 & 0.87829800 & -0.47285300 & 2.36985800\end{array}$
$\begin{array}{rrrr}\text { H57 } & 0.75587400 & -1.02977100 & 3.29190800 \\ \text { H58 } & 1.70373400 & 0.22079500 & 2.30622700\end{array}$
H59 -0.98533900 $0.47891900-0.07214600$

APPENDIX 2

A2.1 Experimental Procedures for Chapter 2

General Information: Commercial reagents were purchased and used without further purification. All glassware was flame dried and reactions were performed under a nitrogen atmosphere, unless otherwise stated. Toluene, dichloromethane, diethyl ether, and THF were dried over a column of alumina. Flash chromatography was done with MP Silitech 32-63D $60 \AA$ silica, and thin layer chromatography (TLC) was performed with EMD $250 \mu \mathrm{~m}$ silica gel $60-\mathrm{F}_{254}$ plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data was acquired on a Varian Inova 400,500 , or $600(400,500$ or 600 MHz$)$ spectrometer and referenced to residual protic solvent or TMS. IR spectroscopy was done on a Nicolet Avatar 370 OTGS spectrometer. Highresolution mass spectrometry was performed at the University of Illinois at Urbana-Champaign facility.

The known bromoaldehyde $(10.000 \mathrm{~g}, 0.031 \mathrm{~mol})$, was added to a flame-dried round bottom flask and dissolved in dry DMF (311.4 mL). Triethyl amine ($5.4 \mathrm{~mL}, 38.9 \mathrm{mmol}$) was added followed by palladium acetate $(0.350 \mathrm{~g}, 0.002 \mathrm{~mol})$ and triphenylphosphine $(0.820 \mathrm{~g}, 0.003 \mathrm{~mol})$. Then the allylic alcohol ($13.400 \mathrm{~g}, 0.156 \mathrm{~mol}$) was added and the reaction was heated at $100^{\circ} \mathrm{C}$ for 12 hours. Upon completion, the reaction mixture was quenched with one molar hydrochloric acid (100.0 mL) and extracted with ether. The combined ether extracts were subsequently washed with distilled water and dried with sodium sulfate. The ethereal solution was concentrated and purified with silica gel $(70 \%$ hexanes, 30% ethyl acetate) to yield keto-aldehyde ($7.900 \mathrm{~g}, 78 \%$).

FTIR (thin film/NaCl) 2958, 2930, 1708, 1677, 1597, 1511, 1354, 1270, $1108 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta=10.02(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.70(\mathrm{~m}, 2 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=7.1,13.2,1 \mathrm{H}), 2.76(\mathrm{dd}, J=7.1,13.2,1 \mathrm{H}), 2.61-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $0.86(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta=210.2,190.2,153.3,149.3,137.7,137.1,129.1$, $128.7,128.1,127.9,117.0,115.0,71.0,55.8,49.3,35.4,29.1,16.8$; HRMS (EI) $m / z 349.1408$ [calc'd for $\left.\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 349.1416\right]$.

Potassium tert-butoxide $(2.020 \mathrm{~g}, 0.017 \mathrm{~mol})$ was added to a flame-dried round bottom flask and dry THF (300.0 mL) was added under a nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The starting material (5.070 $\mathrm{g}, 0.016 \mathrm{~mol})$ was dissolved in dry THF $(11.0 \mathrm{~mL})$ and added drop-wise to the butoxide slurry. Upon complete addition, the reaction was allowed to stir for an additional 30 minutes at $-78^{\circ} \mathrm{C}$ at which time the bath was removed and the reaction allowed to warm to room temperature. The reaction was neutralized with saturated sodium bicarbonate and extracted with ether. The combined extracts were dried over sodium sulfate, concentrated, and purified by column chromatography (70% hexanes, 30% ethyl acetate) to yield enone ($4.310 \mathrm{~g}, 90 \%$).

FTIR (thin film/NaCl) 2964, 2933, 1651, 1567, 1519, 1455, 1354, 1268, 1164, $1098 \mathrm{~cm}^{-1} ; \quad{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\delta=7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{~d}, J=12.6,1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.04$ $(\mathrm{d}, J=12.6,1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta=203.5,149.4,148.2,142.0,136.6,134.2,128.8,128.2,127.5,127.4$, $127.4,115.9,115.3,71.1,56.4,44.7,37.0,15.7$; HRMS (EI) $m / z 309.1483$ [calc'd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})$ 309.1491].

2.84

Freshly distilled diisopropyl amine ($2.50 \mathrm{~mL}, 0.02 \mathrm{~mol}$) was added to a flame-dried flask and diluted with dry THF $(60.0 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$ under nitrogen. Butyl lithium $(2.5 \mathrm{M}, 6.5 \mathrm{~mL}, 0.02$ mol) was then added and allowed to react for 30 minutes. Starting material ($2.500 \mathrm{~g}, 0.008 \mathrm{~mol}$) was then dissolved in THF (10.0 mL) and added drop-wise to the LDA solution over 1 minute and allowed to stir for an additional 15 minutes. A stock solution of N -phenyl triflimide ($3.190 \mathrm{~g}, 8.900 \mathrm{mmol}$) was then added and the bath removed as the reaction warmed to room temperature. After 1 hour the reaction was diluted with ether $(500.0 \mathrm{~mL})$ and washed with NaOH solution $(0.1 \mathrm{M}, 200.0 \mathrm{~mL})$. The ethereal solution was then dried over sodium sulfate, concentrated, and purified with column chromatography (70% hexanes, 30% ethyl acetate) to yield vinyl triflate ($3.100 \mathrm{~g}, 87 \%$).

FTIR (thin film/NaCl) 3033, 2963, 2840, 1736, 1657, 1603, 1561, 1512, 1413, 1211, 1141, $1029 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.48-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=11.8,1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$, $6.26(\mathrm{~d}, J=11.8,1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta=150.2,148.4,140.5,136.9,134.7,128.8,128.5,128.3,128.2,127.6,127.4,121.1,116.5$, 113.1, 111.5, 71.3, 56.3, 38.1, 18.8; HRMS (EI) $m / z 440.0901$ [calc'd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+) 440.0905$].

2.85

Palladium acetate $(0.087 \mathrm{~g}, 0.390 \mathrm{mmol})$ and triphenylphosphine $(0.203 \mathrm{~g}, 0.780 \mathrm{mmol})$ were added to a flame-dried flask at room temperature under nitrogen. Dry DMF (30.0 mL) was added followed by triethylamine $(0.54 \mathrm{~mL}, 3.86 \mathrm{mmol})$ and methanol $(6.2 \mathrm{~mL}, 0.154 \mathrm{~mol})$. Starting triflate $(1.700 \mathrm{~g}, 3.860 \mathrm{mmol})$ was dissolved in dry DMF $(9.0 \mathrm{~mL})$ and added to the reaction and a balloon of carbon monoxide was attached via needle through a septum. The reaction was heated at $80^{\circ} \mathrm{C}$ for 3 hours until the starting material was consumed. The reaction was then diluted with ethyl acetate (300.0 mL) and washed with distilled water ($3 \times 50.0 \mathrm{~mL}$). The organics were then dried over sodium sulfate and purified with silica gel chromatography (70% hexanes, 30% ethyl acetate) to yield enoate (1.110 g , 82\%).

FTIR (thin film/NaCl) 3029, 2936, 1713, 1602, 1509, 1453, $1222 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$ $\delta=7.47-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=11.6,1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=11.6,1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=168.2$, $149.6,148.3,146.9,137.1,131.6,128.9,128.7,128.1,127.8,127.6,127.2,124.0,112.7,110.8,71.3$, 56.3, 51.7, 43.2, 22.8; HRMS (EI) $m / z 351.1584$ [calc'd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 351.1596$].

2.86

Triphenylmethyl hydroperoxide $(0.166 \mathrm{~g}, 0.600 \mathrm{mmol})$ was added to a flame-dried flask and dissolved in dry THF $(7.0 \mathrm{~mL})$ under nitrogen and then cooled to $-78^{\circ} \mathrm{C}$. Methyl lithium $(1.6 \mathrm{M}, 0.33$ $\mathrm{mL}, 0.52 \mathrm{mmol}$) was added and the reaction was stirred for 10 minutes. Starting diene ($0.140 \mathrm{~g}, 0.400$ mmol) was then dissolved in dry THF $(1.0 \mathrm{~mL})$, added to the reaction, and allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 hour. The reaction was then warmed to room temperature and quenched with saturated ammonium chloride (50.0 mL) and extracted with ethyl acetate ($3 \times 100.0 \mathrm{~mL}$). The organics were then dried over sodium sulfate, concentrated, and purified by silica gel chromatography (80% hexanes, 20% ethyl acetate) to yield epoxide ($0.129 \mathrm{~g}, 89 \%$).

FTIR (thin film/NaCl) 2953, 2935, 1747, 1604, 1518, 1267, 1099, 1064, $1454 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.51-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=11.4,1 \mathrm{H}), 6.16(\mathrm{~d}, J=11.4$, $1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=13.6,1 \mathrm{H}), 2.78(\mathrm{~d}, J=13.6,1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta=169.6,148.8,147.9,137.1,134.1,128.9,128.8,128.5,128.2,127.6$, $124.2,115.7,113.6,71.6,71.4,62.9,56.4,52.9,43.4,18.7$; HRMS (EI) $m / z 367.1541$ [calc'd for $\left.\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) 367.1545\right]$.

Starting epoxide $(0.120 \mathrm{~g}, 0.330 \mathrm{mmol})$ was dissolved in dry toluene $(0.33 \mathrm{~mL})$ and dry $\mathrm{Cu}(\mathrm{hfacac})_{2}(0.008 \mathrm{~g}, 0.017 \mathrm{mmol}$, dried on vacuum pump for 2 hours prior to use) was added at room temperature. The vial was sealed well and the reaction heated at $100^{\circ} \mathrm{C}$ for 12 hours. After allowing the reaction to cool to room temperature, it was filtered through neutral alumina (activity grade 1), concentrated and purified with silica gel chromatography (80% hexanes, 20% ethyl acetate) to give the ring expansion product ($0.118 \mathrm{~g}, 99 \%$).

FTIR (thin film/NaCl) 2952, 2935, 1714, 1611, 1506, 1452, 1307, 1261, 1100, 1070, $\mathrm{cm}^{-1} ; \quad{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.44-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=2.0$, ${ }^{13}$), $5.08(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.70(\mathrm{~d}, J=17.1,1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta=164.2,148.3,147.8,147.6,137.3,135.2,128.8,128.8,128.1,127.5$, 126.3, 116.4, 108.4, 84.2, 79.7, 71.4, 56.5, 51.7, 34.7, 23.6; HRMS (EI) $m / z 367.1531$ [calc'd for $\left.\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) 367.1545\right]$.

Methyl enoate ($0.080 \mathrm{~g}, 0.219 \mathrm{mmol}$) was dissolved in dry THF (4.4 mL) and the solution cooled to $-78^{\circ} \mathrm{C}$ under nitrogen. Lithium triethylborohydride ($1 \mathrm{M}, 0.88 \mathrm{~mL}, 0.88 \mathrm{mmol}$) was added drop-wise and the reaction stirred for 90 minutes. The bath was then removed and when the reaction had come to room temperature it was quenched with saturated ammonium chloride and extracted with DCM. The organics were dried over sodium sulfate, concentrated, and chromatographed (50% hexanes, 50% ethyl acetate) to give the alcohol ($0.065 \mathrm{~g}, 88 \%$).

FTIR (thin film/ $\mathbf{N a C l}$) 2922, 2939, 1509, 1454, 1333, 1257, 1223, 1117, 1073, $1015 \mathrm{~cm}^{-1} ; \quad{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta=7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=6.9$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.75(\mathrm{~d}, J=17.0,1 \mathrm{H})$, 2.58-2.44 (m, 1H), 2.38-2.20(m, 1H), 1.52 (s, 3H), 1.51-1.46(m, 1H); $\left.{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z , ~ C D C l ~} \mathbf{H}_{3}\right) \delta$ $=148.1,147.4,137.4,134.4,128.7,128.0,127.5,124.4,114.6,107.9,81.8,77.3,71.5,64.9,56.3,49.8$, 40.1, 36.5, 28.4; HRMS (EI) $m / z 341.1758$ [calc'd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 341.1753$].

2.89

Primary alcohol ($0.010 \mathrm{~g}, 0.030 \mathrm{mmol}$) was dissolved in dry DCM (0.6 mL) at room temperature. Triphenyl phosphine $(0.012 \mathrm{~g}, 0.045 \mathrm{mmol})$ was then added followed by carbon tetrabromide $(0.015 \mathrm{~g}, 0.045 \mathrm{mmol})$ and the reaction was stirred for 4 hours until the starting material was consumed. The crude reaction mixture was concentrated and directly purified by silica gel chromatography (30% ethyl acetate, 70% hexanes) to give bromide ($0.010 \mathrm{~g}, 84 \%$).

FTIR (thin film/NaCl) 2953, 2917, 1653, 1507, 1457, 1338, 1257, 1225, $1012 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta=7.45-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=6.7,1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.77(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.56-$ $\left.2.48(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=3.8,12.3,1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta=148.4,147.6$, $137.3,134.0$, 128.8, 128.1, 127.6, 123.8, 114.6, 108.0, 82.2, 76.6, 71.5, 56.4, 50.2, 43.3, 36.1, 35.1, 28.1; HRMS (EI) $m / z 403.0908$ [calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Br}(\mathrm{M}+\mathrm{H}) 403.0909$].

2.90

Benzyl-protected phenol $(0.011 \mathrm{~g}, 0.027 \mathrm{mmol})$ was dissolved in dry acetone $(2.7 \mathrm{~mL})$ at room temperature. $10 \% \mathrm{Pd} / \mathrm{C}(0.020 \mathrm{~g})$ was added followed by ammonium formate $(0.009 \mathrm{~g}, 0.135 \mathrm{mmol})$. The reaction was sealed in a vial and heated at $60^{\circ} \mathrm{C}$ for 4 hours. The reaction was filtered through Celite and concentrated to yield pure phenol ($0.008 \mathrm{~g}, 94 \%$).

FTIR (thin film/NaCl) 2967, 2880, 1591, 1451, 1247, 1099, 1070, $1024 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta=6.64(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.6,1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~d}$, $J=17.2,1 \mathrm{H}), 2.80(\mathrm{~d}, J=17.2,1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=145.1,144.9,132.8,124.6,114.4,106.7,82.2,76.7,56.2,50.2$, 43.4, 36.0, 35.1, 28.1; HRMS (EI) $m / z 312.0356$ [calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Br}(\mathrm{M}+) 312.0361$].

Starting phenol ($0.005 \mathrm{~g}, 0.016 \mathrm{mmol}$) was dissolved in anhydrous methanol (2.0 mL) and stirred at room temperature. Iodobenzene diacetate $(0.006 \mathrm{~g}, 0.018 \mathrm{mmol})$ was added to the reaction and after a few seconds, the reaction turned a bright yellow. The reaction was stirred for 10 minutes before being concentrated and directly purified using silica gel chromatography (30% ethyl acetate, 70% hexanes) to give dearomatized product ($0.005 \mathrm{~g}, 91 \%$). This ortho-quinone mono-ketal was dissolved in dry toluene (2.0 mL) and tributyltin hydride ($0.01 \mathrm{~mL}, 0.03 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$, followed by active triethylborane $(1 \mathrm{M}, 0.01 \mathrm{~mL}, 0.01 \mathrm{mmol})$. The reaction was warmed to room temperature and was diluted with ethyl acetate and washed with brine, dried over sodium sulfate, and the organics were concentrated. The product was purified using silica gel chromatography to give the quenched, dimerized product ($0.003 \mathrm{~g}, 55 \%$).

Monomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=5.97(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=7.8,1 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}$, $3 \mathrm{H})$.

Dimer: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta=5.78-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.5,1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.5,1 \mathrm{H})$, $3.78(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.39-2.35 (m, 1H), 2.28-2.22 (m, 1H), 2.15-2.06 (m, 2H), 1.92-1.88 (m, 1H), 1.88-1.82 (m, 1H), 1.80$1.65(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~d}, J=7.3,3 \mathrm{H}), 0.70(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;$ HRMS (EI) $m / z 513.24973$ [calc'd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{O}_{8}\left(\mathrm{M}\left(-\mathrm{CH}_{3}\right)+\right)$ 513.24883].

$\xrightarrow[\substack{\text { 2. Methyl } \\ \text { acrylate, Tol }}]{\substack{\text { MeOH }}}$

Phenol $(0.004 \mathrm{~g}, 0.013 \mathrm{mmol})$ was dissolved in dry methanol $(0.2 \mathrm{~mL})$ at room temperature. Solid iodobenzene diacetate $(0.005 \mathrm{~g}, 0.014 \mathrm{mmol})$ was added and the reaction turned a bright yellow over the course of five minutes. The reaction was concentrated and filtered through a plug of silica to give the crude oxidation product. This product was next dissolved in dry toluene (0.2 mL) and methyl acrylate $(0.01 \mathrm{~mL}, 0.13 \mathrm{mmol})$ was added. The reaction was stirred at $50^{\circ} \mathrm{C}$ for five hours at which time the solvent was evacuated and the crude oil subjected to silica gel chromatography to give the product ($0.005 \mathrm{~g}, 91 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta=4.36(\mathrm{~d}, J=6.5,1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.12$ $(\mathrm{m}, 1 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.28(\mathrm{~m}, 6 \mathrm{H}), 2.18(\mathrm{~d}, J=18.0,1 \mathrm{H}), 2.00(\mathrm{~d}$, $J=11.9,1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$; HRMS (EI) $\mathrm{m} / \mathrm{z} 429.0896$ [calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Br}(\mathrm{M}+\mathrm{H})$ 429.0913].

A solution of Diels-Alder product $(0.010 \mathrm{~g}, 0.023 \mathrm{mmol})$ and dry toluene $(2.3 \mathrm{~mL})$ was purged with nitrogen and cooled to $-78^{\circ} \mathrm{C}$. To this was added tributyltin hydride (10% in toluene, 0.07 mL , $0.03 \mathrm{mmol})$ followed by triethyl borane $(1 \mathrm{M}, 0.02 \mathrm{~mL})$ that had been activated by addition of dry air. The reaction was allowed to stir for 10 minutes and the bath was removed. After 30 minutes, the reaction was concentrated and purified using silica gel chromatography to give quenched product ($0.007 \mathrm{~g}, 86 \%$).

FTIR (thin film/NaCl) 2966, 2950, 1734, 1456, 1437, 1202, 1135, 1096, 1055, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta=4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.99(\mathrm{~m}, 1 \mathrm{H})$, 2.94-2.88 (m, 1H), 2.42-2.31 (m, 1H), 2.29-2.23 (m, 1H), 2.17 (s, 1H), 2.10-2.02 (m, 1H), 1.80-1.75 (m, $1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 3 \mathrm{H})$; HRMS (EI) $\mathrm{m} / \mathrm{z} 351.1813$ [calc'd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H}) 351.1808$].

Starting material ($0.035 \mathrm{~g}, 0.096 \mathrm{mmol}$) was dissolved in dry methanol (1.9 mL) at room temperature under nitrogen. Palladium on carbon $(10 \%, 0.030 \mathrm{~g})$ was added to the reaction and the nitrogen was replaced by a balloon of hydrogen gas. The reaction was heated at $50^{\circ} \mathrm{C}$ for 12 hours and then filtered through a plug of Celite. The reaction was concentrated and loaded directly onto a silica gel column for purification yielding deprotected product ($0.024 \mathrm{~g}, 90 \%$).

FTIR (thin film/NaCl) 2973, 2939, 1736, 1509, 1343, 1284, 1199, $1108 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta=6.55(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{bs}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=6.8,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $3.02-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.56(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H})$, $1.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=172.9,144.9,144.8,132.0,124.4,114.3,106.5,82.4$, 77.7, 56.1, 53.6, 52.1, 38.9, 37.6, 28.0; HRMS (EI) $m / z 278.1154$ [calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}(\mathrm{M}+)$ 278.1154].

Starting phenol ($0.034 \mathrm{~g}, 0.122 \mathrm{mmol})$ was dissolved in dry DCM $(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen. To this was added freshly distilled triethylamine ($0.04 \mathrm{~mL}, 0.24 \mathrm{mmol}$) and then triflic anhydride ($0.02 \mathrm{~mL}, 0.14 \mathrm{mmol}$). The reaction was stirred for 10 minutes until the reaction was complete. The solvent was partially removed and the residue purified by silica gel chromatography to yield the triflate $(0.044 \mathrm{~g}, 88 \%)$.

FTIR (thin film/NaCl) 2982, 2957, 1737, 1614, 1508, 1421, 1206, 1141, $1082 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta=6.85(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=7.1,1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.03-3.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=17.2,1 \mathrm{H}), 2.62(\mathrm{~d}, J=17.2,1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=4.1,12.5,1 \mathrm{H}), 1.65$ ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=172.6,157.8,149.6,141.3,137.7,124.7,122.2,108.8,82.4$, 56.4, 54.8, 53.7, 52.2, 38.7, 37.2, 27.8.; HRMS (EI) $m / z 410.06474$ [calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}+)$ 410.06471].

Starting triflate $(0.026 \mathrm{~g}, 0.063 \mathrm{mmol})$ was dissolved in anhydrous DMF $(1.3 \mathrm{~mL})$ at room temperature. To this was added freshly distilled triethylamine ($0.09 \mathrm{~mL}, 6.30 \mathrm{mmol}$), palladium acetate $(0.001 \mathrm{~g}, 0.006 \mathrm{mmol})$, and triphenylphosphine $(0.003 \mathrm{~g}, 0.012 \mathrm{mmol})$. Upon addition of formic acid $(0.02 \mathrm{~mL}, 0.63 \mathrm{mmol})$, a white smoke was observed and the reaction was sealed and heated at $100^{\circ} \mathrm{C}$ for 15 hours. After cooling to room temperature the reaction was quenched with saturated sodium bicarbonate (10.0 mL) and extracted with ethyl acetate ($3 \times 50.0 \mathrm{~mL}$). The extracts were dried over sodium sulfate, concentrated and purified with silica gel chromatography to give the product (0.015 g , 90\%).

FTIR (thin film/NaCl) 2950, 2902, 1736, 1613, 1503, 1433, 1251, 1198, 1164, $1035 \mathrm{~cm}^{-1} ; \quad{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta=6.90(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.6,8.5,1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.6,1 \mathrm{H}), 5.01$ (d, $J=6.9,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.62(\mathrm{~d}, J=17.0,1 \mathrm{H})$, 2.55-2.46 (m, 1H), 2.42-2.37 (m, 1H), $1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=172.9,157.9$, $141.3,129.3,123.7,113.0,109.1,82.6,78.0,55.4,53.7,52.1,38.7,37.4,28.0$; HRMS (EI) m / z 262.12055 [calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}(\mathrm{M}+) 262.12051$].

Starting material ($0.009 \mathrm{~g}, 0.031 \mathrm{mmol}$) was dissolved in DCM (0.62 mL) at room temperature. The tris(pentafluorophenyl)borane ($0.002 \mathrm{~g}, 0.003 \mathrm{mmol}$) was then added followed by a 10% stock solution of triethylsilane $(0.06 \mathrm{~mL}, 0.034 \mathrm{mmol})$ and the reaction was allowed to stir at room temperature for 1 hour. After starting material was consumed, the reaction was quenched with 3 drops of triethyl amine and filtered through a Celite plug before being purified by silica gel chromatography (80% hexanes, 20% ethyl acetate) to give the TES-ether ($0.011 \mathrm{~g}, 88 \%$).

FTIR (thin film/NaCl) 3014, 2993, 1770, 1374, 1241, 1057, $914 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ $=6.83(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.2,2.3,1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.3,1 \mathrm{H}), 4.97(\mathrm{~d}, J=7.0,1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$, $3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.62(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9,9 \mathrm{H}), 0.72(\mathrm{q}, J=7.9,6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=172.8,153.7$, $141.3,129.2,124.3,118.9,115.2,82.6,77.8,53.7,52.0,38.7,37.4,28.0,6.9,5.2$; HRMS (EI) m / z 362.1911 [calc'd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+)$ 362.1913].

Starting ester ($0.006 \mathrm{~g}, 0.018 \mathrm{mmol}$) was dissolved dry DCM (0.9 mL) under nitrogen at $78^{\circ} \mathrm{C}$. To this was added 20% by weight DIBAL-H in THF $(0.04 \mathrm{~mL}, 0.05 \mathrm{mmol})$ drop-wise and the reaction was then maintained at $-78^{\circ} \mathrm{C}$ for 30 minutes. The bath was removed and when the reaction reached room temperature, saturated sodium potassium tartrate $(0.2 \mathrm{~mL})$ was added followed by ethyl acetate $(0.2 \mathrm{~mL})$ to quench remaining DIBAL-H. The reaction was extracted with ethyl acetate, dried over sodium sulfate, concentrated, and purified with silica gel chromatography to give the primary alcohol ($0.005 \mathrm{~g}, 90 \%$).

FTIR (thin film/NaCl) 2958, 2922, 2875, 1499, 1279, 1264, 1015, 974, $905 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta=6.90(\mathrm{~d}, J=8.3,1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.3,2.7,1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.7,1 \mathrm{H}), 4.91(\mathrm{~d}, J=7.2,1 \mathrm{H})$, $3.65-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.85(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.60-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.18(\mathrm{~m}, 1 \mathrm{H})$, $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.8,9 \mathrm{H}), 0.72(\mathrm{q}, J=7.8,6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (600 MHz HSQCAD/gHMBCAD, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta=152.4,141.3,128.5,123.4,113.0,109.4,80.7,75.9,63.7,48.4$, 38.8, 34.9, 27.2, 5.6, 3.9; HRMS (EI) $m / z 334.1964$ [calc'd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+$) 334.1964].

Starting alcohol $(0.002 \mathrm{~g}, 0.007 \mathrm{mmol})$ was dissolved in dry $\mathrm{DCM}(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen. Freshly distilled triethylamine ($0.01 \mathrm{~mL}, 0.07 \mathrm{mmol}$) was added followed by p toluenesulfonyl chloride $(0.006 \mathrm{~g}, 0.032 \mathrm{mmol})$. The bath was removed and the reaction stirred for 16 hours. The reaction was quenched with water $(1.0 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 5.0 \mathrm{~mL})$. The organics were dried with sodium sulfate, concentrated and purified with silica gel chromatography to give the tosylate ($0.002 \mathrm{~g}, 67 \%$).

FTIR (thin film/NaCl) 2954, 2915, 1674, 1622, 1497, 1457, 1372, 1243, 1177, 1156, 1124, 1062, 1011 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=7.72(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2,1 \mathrm{H})$, 6.59 (dd, $J=2.5,8.2,1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.5,1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.9,1 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.73(\mathrm{~m}$, $1 \mathrm{H}), 2.86(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.54(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H})$, $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{dd}, J=3.9,12.3,1 \mathrm{H}), 0.97(\mathrm{t}, J=7.8,9 \mathrm{H}), 0.71(\mathrm{q}, J=7.8,6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (600 MHz HSQCAD/gHMBCAD, $\mathbf{C D C l}_{3}$) 153.7, 144.9, 141.6, 130.8, 129.9, 129.1, 128.0, 124.0, 118.8, 115.1, 81.8, 76.8, 71.4, 46.0, 39.7, 35.9, 27.9, 21.5, 6.7, 4.8; HRMS (EI) m/z 489.2151 [calc'd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{SiS}$ $(\mathrm{M}+\mathrm{H}) 489.2131]$.

Starting tosylate $(0.016 \mathrm{~g}, 0.033 \mathrm{mmol})$ was dissolved in dry THF (2.0 mL) at room temperature. A 10% stock solution of TBAF $(0.4 \mathrm{~mL}, 0.04 \mathrm{mmol})$ was added and the reaction allowed to stir for 1 hour at $100^{\circ} \mathrm{C}$. The reaction was then concentrated and purified with silica gel to yield known dienone ($0.006 \mathrm{~g}, 91 \%$).

FTIR (thin film/NaCl) 2963, 2942, 1659, 1626, $1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=6.66(\mathrm{~d}$, $J=10.0,1 \mathrm{H}), 6.32$ (dd, $J=1.6,10.0,1 \mathrm{H}), 6.12(\mathrm{~d}, J=1.6,1 \mathrm{H}), 4.71(\mathrm{~d}, J=4.3,1 \mathrm{H}), 2.59$ (t, $J=6.2,1 \mathrm{H})$, $2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=11.4,1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.51$
 80.0, 54.9, 49.9, 48.7, 44.4, 42.6, 22.2; HRMS (EI) $m / z 202.0993$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M}+)$ 202.0994].

Starting bromide ($1.000 \mathrm{~g}, 4.650 \mathrm{mmol}$) was mixed with keto-boronate ($1.790 \mathrm{~g}, 9.300 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.930 \mathrm{~g}, 0.014 \mathrm{~mol})$, palladium acetate $(0.026 \mathrm{~g}, 0.120 \mathrm{mmol})$, and RuPhos (2-dicyclohexylphosphino-2', 6^{\prime}-diisopropoxybiphenyl) ($0.108 \mathrm{~g}, 0.230 \mathrm{mmol}$) under an atmosphere of nitrogen. Freshly degassed dry toluene (18.6 mL) and freshly degassed distilled water (4.7 mL) were sequentially added and the reaction was heated at $85^{\circ} \mathrm{C}$ for 16 hours. The reaction was then quenched with pH 7.5 phosphate buffer and extracted with ethyl acetate. The organics were dried over sodium sulfate, concentrated and purified with silica gel to give the keto-aldehyde ($0.725 \mathrm{~g}, 71 \%$).

FTIR (thin film/NaCl) 2970, 2935, 1706, 1608, 1572, 1499, 1263, 1164, $1037 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=10.20(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.9,1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.05(\mathrm{dd}, J=2.9,8.4,1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.08(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta=212.3,192.5,158.7,134.8,134.7,133.6,120.3,116.9,55.7,48.9,34.8,29.3,16.5$; HRMS (EI) $m / z 220.1099$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M}+)$ 220.1100].

Synthesis of keto-boronate:

Copper chloride ($0.035 \mathrm{~g}, 0.360 \mathrm{mmol}$), sodium tert-butoxide ($0.103 \mathrm{~g}, 1.070 \mathrm{mmol}$), and DPEPhos ($0.192 \mathrm{~g}, 0.360 \mathrm{mmol}$) were mixed under nitrogen. THF (15.0 mL) was added at room temperature and the mixture was stirred for 30 minutes. Bispinacolato diboron ($3.170 \mathrm{~g}, 0.013 \mathrm{~mol}$) in THF (9.0 mL) was added and the reaction was stirred for 15 minutes. 3-methyl-3-butene-2-one (1.000 $\mathrm{g}, 0.012 \mathrm{~mol})$ was then added followed by anhydrous methanol $(0.9 \mathrm{~mL})$ and the reaction was stirred for 2 hours. This mixture was then filtered through Celite, concentrated to an oil, and subsequently dissolved in acetonitrile (60.0 mL) and cooled to $0^{\circ} \mathrm{C}$. Saturated $\mathrm{KHF}_{2}(3.710 \mathrm{~g}, 0.047 \mathrm{~mol}, 10 \mathrm{~mL}$ $\mathrm{H}_{2} \mathrm{O}$) was added drop-wise and the reaction was stirred 2 hours. The solvent was then removed. The solids were triturated with hot acetone and the acetone washings combined and concentrated to 10% of the original volume. The product was precipitated by adding diethyl ether and recrystallized with acetone $\left(1.950 \mathrm{~g}, 85 \%, \mathrm{mp}=110-112^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\left(\mathbf{C D}_{3}\right)_{2} \mathbf{C O}\right) \delta=2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{C O}\right) \delta=205.6,44.9,29.2,26.1,18.3$.

Potassium tert-butoxide $(3.240 \mathrm{~g}, 0.027 \mathrm{~mol})$ was added to a flame-dried round bottom flask and dry THF (360.0 mL) was added under a nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The starting material (4.010 $\mathrm{g}, 0.018 \mathrm{~mol})$ was dissolved in dry THF $(10.0 \mathrm{~mL})$ and added drop-wise to the butoxide slurry. Upon complete addition, the reaction was allowed to stir for an additional 30 minutes at $-78^{\circ} \mathrm{C}$ at which time the bath was removed and the reaction allowed warming to room temperature. The reaction was neutralized with saturated sodium bicarbonate and extracted with ether. The combined extracts were dried over sodium sulfate, concentrated, and purified by column chromatography (70% hexanes, 30% ethyl acetate) to yield enone ($3.420 \mathrm{~g}, 93 \%$).

FTIR (thin film/NaCl) 2970, 2935, 1657, 1600, 1569, 1504, 1275, 1175, $1327 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.20(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.02(\mathrm{~d}, J=12.8,1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=12.8,1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl $\mathbf{3}_{\mathbf{3}}$) $\delta=203.7,158.7,142.0,135.3,132.7,131.1,129.4,117.5,115.5,55.7,45.3,36.5,15.9$; HRMS (EI) $\mathrm{m} / \mathrm{z} 202.0993$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M}+)$ 202.0994].

Freshly distilled diisopropyl amine ($5.2 \mathrm{~mL}, 0.037 \mathrm{~mol}$) was added to a flame-dried flask and diluted with dry THF (160.0 mL) and cooled to $-78^{\circ} \mathrm{C}$ under nitrogen. Butyl lithium ($1.6 \mathrm{M}, 21.0 \mathrm{~mL}$, 0.034 mol) was then added and allowed to react for 30 minutes. Starting enone ($3.400 \mathrm{~g}, 0.017 \mathrm{~mol}$) was then dissolved in THF (8.0 mL) and added drop-wise to the LDA solution over 1 minute and allowed to stir for an additional 15 minutes. A stock solution of N-phenyl triflimide $(6.610 \mathrm{~g}, 0.019$ mol) was then added and the bath removed as the reaction warmed to room temperature. After 1 hour the reaction was diluted with ether $(250.0 \mathrm{~mL})$ and washed with NaOH solution $(0.1 \mathrm{M}, 100.0 \mathrm{~mL})$. The ethereal solution was then dried over sodium sulfate, concentrated, and purified with column chromatography (70% hexanes, 30% ethyl acetate) to yield the vinyl triflate ($3.240 \mathrm{~g}, 58 \%$).

FTIR (thin film/NaCl) 2945, 2838, 1498, 1414, 1206, 1139, $1032 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta=7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=2.6,8.3,1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.6,1 \mathrm{H}), 6.32(\mathrm{~d}, J=11.9,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.05(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=158.5,140.3,135.8,135.0,129.5,128.9$, $128.5,122.9,120.8,116.3,112.8,55.6,37.8,18.9$; HRMS (EI) $m / z 335.0558$ [calc'd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H}) 335.0565]$.

Palladium acetate $(0.046 \mathrm{~g}, 0.210 \mathrm{mmol})$ and triphenylphosphine $(0.108 \mathrm{~g}, 0.420 \mathrm{mmol})$ were added to a flame-dried flask at room temperature under nitrogen. Dry DMF (21.0 mL) was added followed by triethylamine $(0.8 \mathrm{~mL}, 6.200 \mathrm{mmol})$ and methanol ($3.4 \mathrm{~mL}, 0.083 \mathrm{~mol}$). Starting triflate $(0.690 \mathrm{~g}, 2.070 \mathrm{mmol})$ was dissolved in dry DMF $(3.0 \mathrm{~mL})$ and added to the reaction and a balloon of carbon monoxide was attached via needle through a septum. The reaction was heated at $80^{\circ} \mathrm{C}$ for 3 hours until the starting material was consumed. The reaction was then diluted with ethyl acetate (250.0 mL) and washed with distilled water ($3 \times 50.0 \mathrm{~mL}$). The organics were then dried over sodium sulfate and purified with silica gel chromatography (70% hexanes, 30% ethyl acetate) to yield the enoate ($0.485 \mathrm{~g}, 96 \%$).

FTIR (thin film/NaCl) 2952, 1716, 1604, 1495, 1434, 1257, $1221 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta=7.09(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.03(\mathrm{~d}, J=11.8,1 \mathrm{H}), 6.90(\mathrm{dd}, J=2.7,8.4,1 \mathrm{H}), 6.86(\mathrm{~d}, J=11.8,1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=2.7,1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta=$ $168.1,158.2$, 148.9, 136.4, 131.9, 128.8, 128.3, 128.2, 124.0, 115.6, 111.7, 55.6, 51.7, 42.9, 22.9; HRMS (EI) $m / z 244.1097$ [calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M}+)$ 244.1100].

Triphenylmethyl hydroperoxide $(0.153 \mathrm{~g}, 0.554 \mathrm{mmol})$ was added to a flame-dried flask and dissolved in dry THF $(7.0 \mathrm{~mL})$ under nitrogen and then cooled to $-78^{\circ} \mathrm{C}$. Methyl lithium $(1.6 \mathrm{M}, 0.3$ $\mathrm{mL}, 0.480 \mathrm{mmol})$ was added and the reaction was stirred for 10 minutes. Starting diene ($0.090 \mathrm{~g}, 0.368$ mmol) was then dissolved in dry THF (0.4 mL), added to the reaction, and allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 hour. The reaction was then warmed to room temperature and quenched with saturated ammonium chloride (5.0 mL) and extracted with ethyl acetate ($3 \times 50.0 \mathrm{~mL}$). The organics were then dried over sodium sulfate, concentrated, and purified by silica gel chromatography (80% hexanes, 20% ethyl acetate) to yield the epoxide ($0.086 \mathrm{~g}, 90 \%$).

FTIR (thin film/NaCl) 2957, 1749, 1605, 1572, 1503, 1435, 1266, $1045 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta=7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=2.7,8.3,1 \mathrm{H}), 4.23(\mathrm{~d}, J=4.3,1 \mathrm{H}), 4.18(\mathrm{~d}, J=4.3,1 \mathrm{H}), 3.96$ (d, $J=13.6,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=13.6,1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta=169.5,158.9,136.9,134.2,130.6,127.9,125.7,115.1,113.6,71.6,62.7,55.5,52.9,42.8$, 18.6; HRMS (EI) $m / z 260.1050$ [calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}(\mathrm{M}+)$ 260.1049].

Starting epoxide ($0.062 \mathrm{~g}, 0.238 \mathrm{mmol}$) was dissolved in dry toluene $(0.5 \mathrm{~mL})$ and dry $\mathrm{Cu}(\mathrm{hfacac})_{2}(0.035 \mathrm{~g}, 0.071 \mathrm{mmol}$, dried on vacuum pump for 2 hours prior to use) was added at room temperature. The vial was sealed well and the reaction heated at $150^{\circ} \mathrm{C}$ for 30 minutes. After allowing the reaction to cool to room temperature, it was filtered through neutral alumina (activity grade 1), concentrated and purified with silica gel chromatography (80% hexanes, 20% ethyl acetate) to give the ring expanded product $(0.050 \mathrm{~g}, 81 \%)$.

FTIR (thin film/NaCl) 2947, 2933, 1714, 1598, 1494, 1437, $1253 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta=6.98(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.5,2.6,1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.6,1 \mathrm{H}), 5.30(\mathrm{~d}, J=1.8,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.78(\mathrm{~d}, J=17.0,1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=$ 164.1, 157.6, 147.4, 137.0, 135.7, 131.3, 126.1, 113.4, 110.0, 84.5, 80.2, 55.6, 51.7, 34.6, 23.6; HRMS (EI) $m / z 261.1129$ [calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 261.1127].

Methyl enoate ($0.135 \mathrm{~g}, 0.520 \mathrm{mmol}$) was dissolved in dry THF $(26.0 \mathrm{~mL})$ and the solution cooled to $-78^{\circ} \mathrm{C}$ under nitrogen. Lithium triethylborohydride ($1 \mathrm{M}, 2.08 \mathrm{~mL}, 2.08 \mathrm{mmol}$) was added drop-wise and the reaction stirred for 90 minutes. The bath was then removed and when the reaction had come to room temperature it was quenched with saturated ammonium chloride and extracted with DCM. The organics were dried over sodium sulfate, concentrated, and chromatographed (50% hexanes, 50% ethyl acetate) to give the primary alcohol ($0.118 \mathrm{~g}, 97 \%$).

FTIR (thin film/NaCl) 2953, 2922, 1610, 1502, 1451, 1382, 1258, 1155, $1034 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ MHz, $\mathbf{C D C l}_{3}$) $\delta=6.97(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.5,8.1,1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.5,1 \mathrm{H}), 4.95(\mathrm{~d}, J=7.2$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.83(\mathrm{~d}, J=17.0,1 \mathrm{H})$, 2.60-2.50 (m, 1H), 2.33-2.24 (m, 1H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{dd}, J=4.2,12.2,1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (600 MHz HSQCAD/gHMBC, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta=157.7$, 142.3, 129.3, 124.3, 112.7, 109.0, 81.8, 77.1, 64.8, 55.4, 49.5, 40.0, 36.2, 28.3; HRMS (EI) $m / z 234.1259$ [calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+$) 234.1256]..

Starting alcohol ($0.049 \mathrm{~g}, 0.210 \mathrm{mmol}$) was dissolved in dry DCM $(4.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen. Freshly distilled triethylamine ($0.3 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added followed by p-toluenesulfonyl chloride $(0.060 \mathrm{~g}, 0.315 \mathrm{mmol})$. The bath was removed and the reaction stirred for 10 hours. The reaction was quenched with water $(2.0 \mathrm{~mL})$ and extracted with DCM ($3 \times 5.0 \mathrm{~mL}$). The organics were dried with sodium sulfate, concentrated and purified with silica gel chromatography to give the tosylate ($0.078 \mathrm{~g}, 96 \%$).

FTIR (thin film/NaCl) 2970, 2929, 1612, 1503, 1452, 1360, 1253, 1176, 1096, 1017, $950 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta=7.73(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2,2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.3,1 \mathrm{H}), 6.66$ (dd, $J=2.6,8.3,1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.6,1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.8,1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 2.87(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.56(\mathrm{~d}, J=17.0,1 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (dd,
 $129.7,129.0,127.6,123.1,112.6,108.7,81.5,76.5,71.2,55.0,45.7,39.4,35.6,27.6,21.3$; HRMS (EI) $\mathrm{m} / \mathrm{z} 389.1417$ [calc'd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 389.1423$].

Starting tosylate $(0.034 \mathrm{~g}, 0.088 \mathrm{mmol})$ was dissolved in DCM $(1.8 \mathrm{~mL})$ at room temperature. The tris(pentafluorophenyl)borane $(0.005 \mathrm{~g}, 0.009 \mathrm{mmol})$ was then added followed by a 10% stock solution of triethylsilane $(0.15 \mathrm{~mL}, 0.097 \mathrm{mmol})$ and the reaction was allowed to stir at room temperature for 1 hour. After the starting material was consumed, the reaction was purified by silica gel chromatography (80% hexanes, 20% ethyl acetate) to give pure TES-ether ($0.036 \mathrm{~g}, 84 \%$).

FTIR (thin film/NaCl) 2954, 2915, 1674, 1622, 1497, 1457, 1372, 1243, 1177, 1156, 1124, 1062, 1011 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta=7.72(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2,1 \mathrm{H})$, 6.59 (dd, $J=2.5,8.2,1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.5,1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.9,1 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.73(\mathrm{~m}$, $1 \mathrm{H}), 2.86(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.54(\mathrm{~d}, J=17.1,1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H})$, $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{dd}, J=3.9,12.3,1 \mathrm{H}), 0.97(\mathrm{t}, J=7.8,9 \mathrm{H}), 0.71(\mathrm{q}, J=7.8,6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (600 MHz HSQCAD/gHMBCAD, $\mathbf{C D C l}_{3}$) 153.7, 144.9, 141.6, 130.8, 129.9, 129.1, 128.0, 124.0, 118.8, 115.1, 81.8, 76.8, 71.4, 46.0, 39.7, 35.9, 27.9, 21.5, 6.7, 4.8; HRMS (EI) $\mathrm{m} / \mathrm{z} 489.2151$ [calc'd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{SiS}$ $(\mathrm{M}+\mathrm{H}) 489.2131]$.

A2.2 NMR Data for Chapter 2

Carbon Chemical Shifts Were Determined From HSQCAD and gHMBCAD Experiments

Carbon Chemical Shifts Were Determined From HSQCAD and gHMBCAD Experiments

Carbon Chemical Shifts Were Determined From HSQCAD and gHMBCAD Experiments

Carbon Chemical Shifts Were Determined
From HSQCAD and gHMBCAD Experiments

Carbon Chemical Shifts Were Determined
From HSQCAD and gHMBCAD Experiments

APPENDIX 3

A3.1 Experimental Procedures for Chapter 3

General Information: Commercial reagents were purchased and used without further purification. All glassware was flame dried and reactions were performed under a nitrogen atmosphere, unless otherwise stated. Toluene, dichloromethane, diethyl ether, and THF were dried over a column of alumina. Flash chromatography was done with MP Silitech 32-63D $60 \AA$ silica, and thin layer chromatography (TLC) was performed with EMD $250 \mu \mathrm{~m}$ silica gel $60-\mathrm{F}_{254}$ plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data was acquired on a Varian Inova 400,500 , or $600(400,500$ or 600 MHz$)$ spectrometer and referenced to residual protic solvent or TMS. IR spectroscopy was done on a Nicolet Avatar 370 OTGS spectrometer. Highresolution mass spectrometry was performed at the University of Illinois at Urbana-Champaign facility.

Starting phenol ($3.480 \mathrm{~g}, 0.017 \mathrm{~mol}$) was dissolved in dry acetone $(34.8 \mathrm{ml})$ and anhydrous potassium carbonate ($4.800 \mathrm{~g}, 0.035 \mathrm{~mol}$) was added. Diethyl bromomalonate ($14.6 \mathrm{ml}, 0.087 \mathrm{~mol}$) was then added and a reflux condenser was attached to the flask. The reaction was refluxed for 14 hours until starting material was consumed. The potassium carbonate was filtered off and the reaction was diluted with diethyl ether and subsequently washed with brine and dried over sodium sulfate. The solvent was removed and the residue was purified with silica gel chromatography to give the malonyl ether (4.300 g, 70\%).

FT-IR (thin film/ NaCl) $2917,1743,1595,1466,1195,1078,915 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=6.54(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{ddt}, J=6.4,10.2,16.6,2 \mathrm{H}), 5.07-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.15(\mathrm{~m}, 4 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=6.4,4 \mathrm{H}), 1.27-1.23(\mathrm{t}, J=7.1,6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=166.3$, $156.3,148.3,136.9,133.9,116.5,113.8,81.9,62.3,55.5,34.3,14.1$; HRMS (EI) m/z 362.1741 [calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}(\mathrm{M}+)$ 362.1729].

Lithium aluminum hydride ($1.570 \mathrm{~g}, 0.041 \mathrm{~mol}$) was placed in a flask and ether (37.0 mL) was added slowly at room temperature. To this slurry was added drop-wise a solution of starting material (3.740 g , $0.010 \mathrm{~mol})$ and ether $(4.0 \mathrm{~mL})$ over ten minutes and the reaction was allowed to stir an additional 2 hours. The reaction was quenched by slow addition of ethyl acetate followed by water and 1 M HCl . The reaction was then diluted with ether and washed with brine. The ether was concentrated and the oil was purified with silica gel chromatography to give diol ($2.680 \mathrm{~g}, 93 \%$).

FT-IR (thin film NaCl) 3406, 2938, 1602, 1466, 1323, 1197, 1050, $915 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=6.58(\mathrm{~s}, 2 \mathrm{H}), 5.97-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 4 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=4.7$, $11.6,2 \mathrm{H}), 3.79(\mathrm{dd}, J=4.1,11.4,2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.8,146.8,137.0,134.1,116.5,113.9,82.1,62.3,55.6,34.5$; HRMS (EI) m / z 278.1521 [calc'd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+) 278.1518$].

Starting diol ($0.318 \mathrm{~g}, 1.140 \mathrm{mmol})$ and triphenylphosphine $(1.050 \mathrm{~g}, 0.004 \mathrm{~mol})$ were dissolved in dry dichloromethane $(11.4 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and carbon tetrabromide $(1.330 \mathrm{~g}, 0.004 \mathrm{~mol})$ was then added. The ice bath was removed and the reaction was allowed to stir 12 hours to ensure completion. The reaction mixture was then concentrated and purified directly with silica gel chromatography to give pure dibromide ($0.427 \mathrm{~g}, 92 \%$).

FT-IR (thin film $/ \mathrm{NaCl}$) 2937, 1638, 1602, 1465, 1327, 1186, 1052, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=6.59(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.20-4.97(\mathrm{~m}, 4 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=3.7$, $10.4,2 \mathrm{H}), 3.64(\mathrm{dd}, J=3.7,10.4,2 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.2,145.8$, $136.7,134.2,116.8,114.1,79.5,55.6,34.7,32.4$; HRMS (EI) m/z 401.98379 [calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Br}_{2}$ (M+) 401.98303].

Dibromide ($0.019 \mathrm{~g}, 0.048 \mathrm{mmol}$) was dissolved in dichloromethane $(0.24 \mathrm{ml})$ and tetrabutylammonium iodide $(0.020 \mathrm{~g}, 0.053 \mathrm{mmol})$ was added. The reaction was cooled to $-78^{\circ} \mathrm{C}$ and boron trichloride solution ($0.06 \mathrm{ml}, 1 \mathrm{M}, 0.06 \mathrm{mmol}$) was added slowly. The reaction was then placed in a $-10^{\circ} \mathrm{C}$ bath and stirred two hours. When complete, the reaction was quenched with saturated sodium bicarbonate and extracted with dichloromethane. The organics were dried over sodium sulfate, concentrated and purified with silica gel chromatography to give phenol ($0.015 \mathrm{~g}, 80 \%$).

FT-IR (thin film $/ \mathrm{NaCl}$) $3387,2917,1598,1454,1322,916 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.53$ (s, 2H), $5.90(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=6.2,10.4,2 \mathrm{H}), 3.63(\mathrm{dd}, J=6.2,10.4$, $2 \mathrm{H}), 3.37(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.2,145.8,136.6,134.5,116.9,115.5,79.5$, 34.5, 32.3; HRMS (EI) m/z 387.9670 [calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Br}_{2}(\mathrm{M}+)$ 387.9674].

Dibromide phenol ($1.000 \mathrm{~g}, 2.560 \mathrm{mmol}$) was dissolved in dry methanol (23.3 ml) and cooled to $0^{\circ} \mathrm{C}$. Iodobenzene diacetate ($0.908 \mathrm{~g}, 2.820 \mathrm{mmol}$) was added and the reaction turned bright yellow immediately. The reaction was concentrated and purified with a plug of silica gel to give pure dearomatized product ($1.010 \mathrm{~g}, 94 \%$).

FT-IR (thin film $/ \mathrm{NaCl}$) 2977, 2944, 1675, 1640, 1427, 1294, 1102, 1061, 1037, $923 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.33(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.19(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{tt}, J=3.3,6.5,1 \mathrm{H}), 3.62-$ $3.50(\mathrm{~m}, 4 \mathrm{H}), 3.30-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 184.5, 157.2, 132.3, 130.5, 120.1, 98.4, 72.0, 51.6, 33.4, 33.0; HRMS (EI) m/z 417.9782 [calc'd for $\left.\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Br}_{2}(\mathrm{M}+) 417.9780\right]$.

Starting material ($0.046 \mathrm{~g}, 0.110 \mathrm{mmol}$) was dissolved in freshly distilled toluene $(11.0 \mathrm{ml})$ and was cooled to $-78^{\circ} \mathrm{C}$. Tributyltin hydride ($0.09 \mathrm{ml}, 0.330 \mathrm{mmol}$) was added to the reaction followed by triethylborane $(0.01 \mathrm{ml}, 0.01 \mathrm{mmol})$. The reaction was allowed to stir 30 minutes and the bath was removed. After 30 additional minutes at room temperature, the reaction was concentrated and purified with silica gel chromatography to give mono cyclized product ($0.025 \mathrm{~g}, 87 \%$).

FT-IR (thin film/NaCl) 2970, 2935, 1678, 1262, 1122, 1026, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=5.85(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.05(\mathrm{~m}$, $2 \mathrm{H}), 2.56-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=7.8,13.9,1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=6.2$, 4 H); ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=198.1,159.5,133.9,133.9,127.2,119.3,118.8,105.3,75.2$, 52.6, 52.3, 44.3, 43.2, 39.3, 35.3, 21.4; HRMS (EI) m/z 262.1566 [calc'd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ (M+) 262.1569].

Potassium iodide ($1.260 \mathrm{~g}, 7.620 \mathrm{mmol}$) and sodium hydride $(0.112 \mathrm{~g}, 2.790 \mathrm{mmol})$ were mixed and dry DMF (25.4 ml) was added and cooled to $-10^{\circ} \mathrm{C}$. The starting material ($0.920 \mathrm{~g}, 2.540 \mathrm{mmol}$) was dissolved in dry DMF $(2.0 \mathrm{ml})$ and added slowly to the slurry. After complete addition, benzyl chloride $(0.44 \mathrm{ml}, 3.81 \mathrm{mmol})$ was added and the bath was removed. After 4 hours the reaction was diluted with ether and washed with distilled water. The ethereal solution was dried over sodium sulfate, concentrated and purified with silica gel chromatography to give benzylated product ($0.980 \mathrm{~g}, 85 \%$).

FT-IR (thin film/ NaCl) 3073, 2981, 2838, 1741, 1602, 1463, 1247, 1195, 1055, 914, $700 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.21-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}), 5.97-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.00(\mathrm{~m}$, $4 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=6.8,4 \mathrm{H}), 1.06(\mathrm{t}, J=7.2,6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.2,156.5,145.6,136.8,134.8,130.5,128.3,128.1,127.2,116.7,112.9,88.6$, 62.0, 55.5, 41.1, 35.4, 13.8. HRMS (EI) m/z 452.2198 [calc'd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{6}(\mathrm{M}+) 452.2199$].

Lithium aluminum hydride $(0.147 \mathrm{~g}, 3.870 \mathrm{mmol})$ was added to a flask and dry ether $(8.7 \mathrm{ml})$ was added carefully. Starting material ($0.875 \mathrm{~g}, 1.940 \mathrm{mmol}$) was dissolved in ether (1.0 ml) and added drop-wise to the LAH solution over twenty minutes. The reaction was allowed to stir 1 hour and then quenched with ethyl acetate followed by water and 1 M HCl . The product was extracted with ether, dried over sodium sulfate and concentrated to an oil. The oil was purified with silica gel chromatography to give pure diol $(0.700 \mathrm{~g}, 98 \%)$.

FT-IR (thin film $/ \mathrm{NaCl}$) 3460, 2938, 1638, 1602, 1461, 1320, 1197, 1052, $915 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 5.91(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.06(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.75(\mathrm{~m}$, $7 \mathrm{H}), 3.48(\mathrm{~d}, J=6.4,4 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.9,145.3,136.9,136.5$, $135.9,130.7,128.5,128.3,116.9,113.9,86.4,65.0,55.5,39.1,35.7$; HRMS (EI) m/z 368.1987 [calc'd for $\left.\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4}(\mathrm{M}+) 368.1988\right]$.

Starting diol ($0.075 \mathrm{~g}, 0.200 \mathrm{mmol}$) was dissolved in dry dichloromethane at $0^{\circ} \mathrm{C}$. Freshly distilled triethylamine ($0.11 \mathrm{ml}, 0.80 \mathrm{mmol}$) was added followed by drop-wise addition of methane sulfonyl chloride ($0.04 \mathrm{ml}, 0.44 \mathrm{mmol}$). The reaction was stirred ten minutes and then neutralized with saturated sodium bicarbonate and extracted with dichloromethane. The combined extracts were dried over sodium sulfate, concentrated and subjected to silica gel chromatography to yield bis-mesylate (0.081 g , 76%).

FT-IR (thin film/ NaCl) 3028, 2938, 1639, 1602, 1464, 1367, 1343, 1175, $1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.09(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{~m}, 4 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=6.3,4 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta=156.4$, 144.5, 136.6, 135.8, 134.1, 130.9, 128.8, 127.7, 117.4, 114.0, 81.8, 68.1, 55.7, 39.5, 37.5, 35.3; HRMS (ESI) $\mathrm{m} / \mathrm{z} 547.1437$ [calc'd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 547.1436].

Starting material ($0.080 \mathrm{~g}, 0.150 \mathrm{mmol}$) and tetrabutyl ammonium bromide ($0.500 \mathrm{~g}, 1.500 \mathrm{mmol}$) were dissolved in dioxane $(1.6 \mathrm{ml})$ and sealed tightly in a small vial. The reaction was heated at $130^{\circ} \mathrm{C}$ for 18 hours until TLC showed complete conversion. The solids were filtered and the solvent removed. The resulting residue was purified with silica gel chromatography to give dibromide ($0.065 \mathrm{~g}, 86 \%$).

FT-IR (thin film/ NaCl) 3076, 2977, 2936, 1602, 1462, 1321, 1195, 1054, 997, $916 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.00(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 4 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=6.5,4 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.2,145.1,136.8$, 135.9, 135.2, 131.1, 128.4, 127.3, 117.1, 113.6, 82.5, 55.6, 41.3, 37.4, 35.6; HRMS (ESI) m/z 515.0209 [calc'd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})$ 515.0197].

Starting material ($0.025 \mathrm{~g}, 0.051 \mathrm{mmol}$) and tris(pentafluorobenzene) borane ($0.003 \mathrm{~g}, 0.005 \mathrm{mmol}$) were mixed at room temperature and 0.5 ml of a 10% solution of triethylsilane ($0.09 \mathrm{ml}, 0.56 \mathrm{mmol}$) in dichloromethane (4.9 ml) was added. The reaction was allowed to stir 36 hours for complete consumption of starting material. The TES group was then removed by addition of DBU (0.01 ml) and 0.5 ml of acetonitrile and stirring 5 minutes. The reaction was treated with saturated ammonium chloride and extracted with dichloromethane. The organics were then dried over sodium sulfate, concentrated down and purified with silica gel to give free phenol ($0.018 \mathrm{~g}, 75 \%$).

FT-IR (thin film/ NaCl) 3061, 2956, 2930, 1600, 1496, 1452, 1184, 996, $703 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~}$ $\left.\mathrm{CDCl}_{3}\right) \delta=7.26-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}), 5.81(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.56(\mathrm{bs}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.31(\mathrm{~d}, J=6.4,4 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.2,145.2,136.6,136.3$, 135.2, 131.1, 128.4, 127.4, 117.2, 115.1, 82.6, 41.4, 37.4, 35.4; HRMS (EI) m/z 478.0139 [calc'd for $\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Br}_{2}(\mathrm{M}+) 478.0143\right]$.

Starting phenol ($0.008 \mathrm{~g}, 0.016 \mathrm{mmol}$) and anhydrous methanol $(0.2 \mathrm{ml})$ were mixed at room temperature and iodobenzene diacetate $(0.005 \mathrm{~g}, 0.016 \mathrm{mmol})$ was added. The reaction was stirred five minutes and then the solvent was removed and the residue purified with silica gel chromatography to yield pure dearomatized bis-bromide ($0006 \mathrm{~g}, 75 \%$).

FT-IR (thin film/ NaCl) $2965,1657,1640,1495,1426,1294,1015,922,703 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.38-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~m}, 2 \mathrm{H}), 5.25-4.99(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{q}, J=11.4,4 \mathrm{H})$, $3.26-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=184.7,159.5,135.2$, $132.8,131.1,129.9,128.8,127.8,120.0,97.6,81.5,50.7,41.8,37.8,33.8$; HRMS (DART) m/z 509.03447 [calc'd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Br}_{2}(\mathrm{M}+\mathrm{H}) 509.03273$].

Starting material ($0.040 \mathrm{~g}, 0.078 \mathrm{mmol}$) was dissolved in dry toluene (1.6 ml) at room temperature and tris(trimethylsilyl)silane $(0.07 \mathrm{ml}, 0.24 \mathrm{mmol})$ was added followed by triethyl borane $(0.07 \mathrm{ml}, 0.07$ $\mathrm{mmol})$. The reaction was purged with air and subsequently stirred for 4 hour. The reaction was loaded directly onto a silica gel column and purified to provide the bicyclic product ($0.020 \mathrm{~g}, 73 \%$).

FT-IR (thin film/NaCl) 2952, 2892, 1672, 1455, 1244, 1083, $914 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{dd}, J=10.0,16.0,2 \mathrm{H}), 5.03(\mathrm{~d}, J=10.0,2 \mathrm{H}), 4.92(\mathrm{~d}, J=16.0,2 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=13.3,1 \mathrm{H}), 2.33$ (dd, $J=7.4,13.7,1 \mathrm{H}), 2.26(\mathrm{~d}, J=13.3,1 \mathrm{H}), 2.15$ (dd, $J=8.5,13.7,1 H$), $1.74(\mathrm{~d}, J=11.5,1 \mathrm{H}), 1.18(\mathrm{~d}, J=11.5,1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (HSQC-AD/gHMBC-AD Derived $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=211.0,136.9,133.6,130.0,128.2,126.6,118.8,108.1,79.4,55.5,51.1$, 47.4, 44.5, 42.6, 42.3; HRMS (ESI) m/z 375.1935 [calc'd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})$ 375.1936].

Starting material ($0.010 \mathrm{~g}, 0.028 \mathrm{mmol}$) was dissolved in dry dichloromethane (2.0 ml) and to this was added Grubbs second generation catalyst $(0.002 \mathrm{~g}, 0.003 \mathrm{mmol})$. Meanwhile, 2-methyl-propene (2.0 ml) was condensed into a pressure vessel at $-78^{\circ} \mathrm{C}$ and to this was added the starting material/Grubbs mixture. The pressure vessel was sealed and heated at $40^{\circ} \mathrm{C}$ for 8 hours. The reaction was then removed from the bath and pressure was carefully allowed to escape. The remaining solution was filtered through a plug of silica gel with 30% ethyl acetate 70% hexanes to afford pure prenylated product ($0.010 \mathrm{~g}, 87 \%$).

FT-IR (thin film $/ \mathrm{NaCl}$) 2957, 2926, 2855, 1715, 1455, 1251, 1066, $841 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{t}, J=7.6,2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~d}, J=13.3,2 \mathrm{H})$, 2.29 (d, $J=13.3,2 \mathrm{H}$), 2.27 (dd, $J=7.5,13.9,2 \mathrm{H}$), 2.13 (dd, $J=7.6,13.9,2 \mathrm{H}), 1.70-1.66$ (m, 8H), 1.49 (s, 6H), 1.17 (d, $J=11.4,2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (HSQC-AD/gHMBC-AD Derived $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $211.7,136.7,134.6,129.9,128.1,126.5,118.9,108.3,79.3,55.2,52.1,46.8,44.5,42.3,35.7,26.0$, 17.8; HRMS (EI) m/z 408.2662 [calc'd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3}(\mathrm{M}+) 408.2665$].

Starting ketone ($0.005 \mathrm{~g}, 0.012 \mathrm{mmol}$) was dissolved in dry THF (0.25 mL) and cooled to $0^{\circ} \mathrm{C}$ under nitrogen. A solution of LHMDS ($1 \mathrm{M}, 0.06 \mathrm{mmol}, 0.06 \mathrm{~mL}$) was added over the course of 2 minutes. The reaction was allowed to stir 10 additional minutes before a $3: 1$ mixture of $\mathrm{TMSCl}: \mathrm{Et}_{3} \mathrm{~N}(0.06$ $\mathrm{mmol}, 0.01 \mathrm{~mL}$) was added and the reaction was allowed to warm to room temperature. After 30 minutes, the reaction was diluted with ether and washed with water. The combined organics were concentrated and purified with silica gel chromatography to give the TMS enol ether ($0.005 \mathrm{~g}, 85 \%$)

FT-IR (thin film/ NaCl) 2956, 2924, 2853, 1454, 1250, 1164, 1064, 1031, $841 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{t}, J=7.4,1 \mathrm{H}), 5.04(\mathrm{t}, J=7.4,1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.95-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.02(\mathrm{~m}, 6 \mathrm{H}), 1.78(\mathrm{dd}, J=12.2,2.9,1 \mathrm{H}) 1.73-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}$, $3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=11.1,1 \mathrm{H}), 1.32(\mathrm{~d}, J=12.2,1 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13}$ C NMR (HSQC-AD/gHMBC-AD Derived $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.6,137.4,133.9,133.5,130.1$, $128.5,128.1,126.4,125.7,120.6,119.9,111.2,108.6,78.9,54.2,51.8,47.7,47.1,45.1,42.6,37.7$, $35.2,34.6,26.2,26.1,18.1,18.0,0.49$; HRMS (EI) m/z 480.3050 [calc'd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+$) 480.3060].

The TMS enol ether ($0.002 \mathrm{~g}, 0.004 \mathrm{mmol}$) was dissolved in dry DME $(0.1 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ under nitrogen. To this was added MeLi ($0.04 \mathrm{mmol}, 0.04 \mathrm{~mL}$) and the reaction was allowed to stir for 5 minutes. Methyl iodide ($0.04 \mathrm{mmol}, 0.01 \mathrm{~mL}$) was then added and the bath was removed. After 45 minutes at room temperature, the reaction was diluted with ether and washed with water. The combined organics were dried over sodium sulfate, concentrated and purified with silica gel chromatography to give the methylated product ($0.003 \mathrm{~g}, 86 \%$).

FT-IR (thin film/ NaCl) 2917, 2849, 1735, 1559, 1365, 1275, 1222, $750 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{t}, J=7.3,1 \mathrm{H}), 4.89(\mathrm{t}, J=7.3,1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.60$ $(\mathrm{d}, J=13.7,1 \mathrm{H}), 2.47(\mathrm{dd}, J=7.3,14.0,1 \mathrm{H}), 2.38(\mathrm{q}, J=7.0,1 \mathrm{H}), 2.28(\mathrm{dd}, J=7.5,13.7,1 \mathrm{H}), 2.16(\mathrm{~d}$, $J=13.7,1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}), 1.23-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (HSQC-AD/gHMBC-AD Derived 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=130.0,129.9,128.4,128.2,126.5,119.1,118.1,55.4,50.1,45.6,45.1,42.8,42.5,35.8$, 30.7, 26.0, 26.0, 17.9, 17.9, 13.8; HRMS (EI) m/z 422.2832 [calc'd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}(\mathrm{M}+) 422.2821$].

Bis [(R)-1-phenylethyl]amine ($0.03 \mathrm{mmol}, 0.01 \mathrm{~mL}$) was added to a reaction vial along with dry THF $(0.2 \mathrm{~mL})$. After cooling to $-78^{\circ} \mathrm{C},{ }^{n} \mathrm{BuLi}(0.03 \mathrm{mmol}, 0.02 \mathrm{~mL})$ was added and the reaction was allowed to stir 15 minutes. $\mathrm{LiCl}(0.5 \mathrm{eq}, 0.2 \mathrm{mg})$ was added immediately following the ${ }^{\mathrm{n}} \mathrm{BuLi}$. At which time the starting ketone $(0.004 \mathrm{~g}, 0.010 \mathrm{mmol})$ was added drop-wise and allowed to stir 15 minutes. To this was added (S)-Mosher acid chloride ($0.012 \mathrm{mmol}, 0.002 \mathrm{~mL}$) and the reaction was maintained at $-78^{\circ} \mathrm{C}$ for 30 minutes. The bath was then removed and at room temperature the reaction was loaded directly on a silica gel plug and eluted with 30% ethyl acetate: 70% hexanes to give the respective Mosher ester ($0.005 \mathrm{~g}, 83 \%, 10: 1$). The product ratios were simply determined by ${ }^{19} \mathrm{~F}$ NMR peak integration. The two respective diastereomers have ${ }^{19} \mathrm{~F}$ NMR shifts of -74.942 and -74.970 relative to an internal standard of hexafluorobenzene.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.00(\mathrm{~m}, 10 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.94(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.08(\mathrm{~m}, 6 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H})$.

A3.2 NMR Data for Chapter 3

C	${ }^{13} \mathrm{C}(\delta \mathrm{ppm})$	$\mathrm{HSQC}-\mathrm{AD}$ ${ }^{1} \mathrm{H}(\delta \mathrm{ppm})$	gHMBC-AD ${ }^{1}$ H-Correlations $)$
1	198.1	---	$2.49,2.42$
2	159.5	---	3.05
3	133.9	5.80	3.05
4	133.9	5.69	$5.06,2.38,2.19$
5	127.1	5.85	$3.05,2.42$
6	119.3	$5.04,5.06$	$2.38,2.19$
7	118.8	$5.12,5.16$	3.05
8	105.3	---	$5.85,3.46,3.05,2.49,2.38 .1 .75$
9	75.2	4.33	$1.87,1.75,1.36$
10	52.6	---	$2.49,2.42,2.38,2.19,1.87,1.75$
11	52.3	3.46	----
12	44.3	$2.49,2.42$	$5.85,2.38,2.19,1.87,1.75$
13	43.2	$1.87,1.75$	$2.49,2.42,2.19,1.36$
14	39.3	$2.38,2.19$	$5.69,5.06,2.49,2.42,1.75$
15	35.3	3.05	$5.85,5.16$
16	21.4	1.36	1.75

Table A3.1 2D-NMR Data for $\mathbf{3 . 6 6}$

\mathbf{C}	${ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{\delta} \mathbf{p p m})$	HSQC-AD $(\mathbf{\delta p m})$	$\mathbf{g H M B C - A D}\left({ }^{\mathbf{1}} \mathbf{H - C o r r e l a t i o n s)}\right.$
1	211.0	-----	$2.40,2.26$
2	136.9	-----	$7.28,2.96$
3	133.6	5.62	$2.33,2.15$
4	130.0	7.21	$7.24,7.21,2.96$
5	128.2	7.28	$7.28,7.21$
6	126.6	7.24	7.21
7	118.8	$5.03,4.92$	$2.33,2.15$
8	108.1	-----	$3.67,2.26,2.15,1.19$
9	79.4	-----	$2.96,1.74,1.19$
10	55.5	3.67	-----
11	51.1	-----	$2.40,2.33,2.26,2.15,1.74,1.19$
12	47.4	$2.40,2.26$	$2.33,2.15,1.19$
13	44.5	$1.74,1.19$	$2.96,2.40,2.33,2.26,2.15,1.74,1.19$
14	42.6	$2.33,2.15$	$5.62,5.03,4.92,2.40,1.19$
15	42.3	2.96	$7.21,1.74$

Table A3.2 2D-NMR Data for 3.73

C	${ }^{13} \mathrm{C}(\delta \mathrm{ppm})$	HSQC-AD ${ }^{1} \mathrm{H}(\delta \mathrm{ppm})$	gHMBC-AD $\left({ }^{1} \mathrm{H}\right.$-Correlations $)$
1	211.7	-----	$2.37,2.29$
2	136.7	----	$7.22,2.94$
3	134.6	----	$2.27,2.13,1.67,1.49$
4	129.9	7.22	2.94
5	128.1	7.23	7.22
6	126.5	7.22	7.22
7	118.9	4.98	$2.27,2.13,1.67,1.49$
8	108.3	-----	$2.29,2.13,1.67,1.17$
9	79.3	----	$2.94,1.67$
10	55.2	3.69	-----
11	52.1	----	$2.37,2.27,2.13,1.67,1.17$
12	46.8	$2.37,2.29$	$2.13,1.17$
13	44.5	$1.67,1.17$	$2.94,2.37,2.27,1.17$
14	42.3	2.94	1.67
15	35.7	$2.27,2.13$	$2.37,1.67$
16	26.0	1.67	$4.98,1.49$
17	17.8	1.49	$4.98,1.67$

Table A3.3 2D-NMR Data for 3.74

C	${ }^{13} \mathrm{C}(\delta \mathrm{ppm})$	HSQC-AD ${ }^{1} \mathrm{H}(\delta \mathrm{ppm})$	gHMBC-AD (${ }^{1} \mathrm{H}-$-Correlations $)$
1	146.6	-----	$4.92,2.07$
2	137.4	-----	$7.25,2.94,2.93$
3	133.9	-----	$2.25,2.13,1.71,1.51$
4	133.5	----	$2.20,2.07,1.72,1.56$
5	130.1	7.21	$7.20,2.94,2.93$
6	128.5	7.17	7.25
7	128.1	7.25	-----
8	126.4	7.20	7.21
9	125.7	7.16	-----
10	120.6	5.15	$2.20,2.07,1.72,1.56$
11	119.9	5.04	$2.25,2.13,1.71,1.51$
12	111.2	4.92	$2.07,1.39$
13	108.6	------	$4.92,3.58,2.07,1.39$
14	78.9	----	$2.94,2.93$
15	54.2	3.58	-----
16	51.8	$1.71,1.39$	2.20
17	47.7	------	$2.25,2.07$
18	47.1	----1.32	$2.20,2.07$
19	45.1	$1.78,1.32$	$2.94,2.07$
20	42.6	$2.94,2.93$	7.21
21	37.7	2.07	4.92
22	35.2	$2.20,2.07$	4.92
23	34.6	$2.25,2.13$	$2.07,1.78,1.32$
24	26.2	1.72	1.56
25	26.1	1.71	1.51
26	18.1	1.56	1.72
27	18.0	1.51	1.71
28	0.49	0.14	-----

Table A3.4 2D-NMR Data for 3.74 (Enol Ether)

C	${ }^{13} \mathrm{C}(\delta \mathrm{ppm})$	HSQC-AD ${ }^{1} \mathrm{H}(\delta \mathrm{ppm})$	gHMBC-AD (H -Correlations)
1	216.2	-----	$2.60,2.38,2.16,1.13$
2	136.9	-----	$7.26,2.91$
3	134.5	----	$1.68,1.67,1.50,1.48$
4	134.5	----	$1.68,1.67,1.50,1.48$
5	130.0	7.25	2.91
6	129.9	7.20	$7.21,2.91$
7	128.4	7.18	7.25
8	128.2	7.26	7.25
9	126.5	7.21	$7.20,7.18$
10	119.1	5.00	$2.28,2.13,1.68,1.50$
11	118.1	4.89	$2.47,2.09,1.67,1.48$
12	108.9	------	$3.67,2.38,2.16$
13	79.4	----	$2.91,1.66$
14	55.4	3.67	-----
15	53.1	------	1.13
16	51.7	----	$2.60,2.28,2.13$
17	50.1	2.38	$1.13,1.11$
18	45.6	(a)1.69, (b) 1.11	2.91
19	45.1	(a)1.66,(b)1.20	$2.91,2.60,2.28$
20	42.8	(a)2.60, (b)2.16	$2.13,1.20$
21	42.5	2.91	1.66
22	35.8	$2.28,2.13$	2.60
23	30.7	$2.47,2.09$	1.11
24	26.0	1.68	$1.50,1.48$
25	26.0	1.67	$1.50,1.48$
26	17.9	1.48	$1.68,1.67$
27	17.9	1.50	$1.68,1.67$
28	13.8	1.13	2.38

Table A3.5 2D-NMR Data for 3.75

A3.3 DFT Calculations for Chapter 3

Coordinates and calculated energies

DFT calculations were performed with the program Gaussian $03{ }^{[1]}$ by using the WebMO interface (WebMO, version 9.1.002p; www.webmo.net) for importing and constructing models. Transition states were verified by following the reaction coordinate forward and reverse (IRC).
[1] Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Table A3.6 Calculated Energies For Cyclization

3.76

C	0.0000000	0.00000000	
C	-0.63759200	-1.34408100	0.37255100
C	-0.79721100	-1.70603500	1.655687
C	-0.45514800	-0.81875000	2.
C	0.05763400	0.52623000	2.445
C	0.25225900	0.93849600	1.18253
C	0.73175400	2.34538000	0.88207400
C	-0.37496900	3.31587700	0.52283300
C	-0.27863500	4.26258100	-0.
H	-1.08796000	4.96350200	-0.59
H	0.61437100	4.38028500	-1.02138200
H	-1.28384400	3.23361700	1.11788300
H	1.47938000	2.33392600	0.08072
H	1.23858300	2.71711300	1.783
H	0.25579300	1.17803700	3.29
0	-0.60596500	-1.16980900	3.95121900
H	-1.21204600	-2.67271100	1.926432
C	-1.04458800	-2.20850900	-0.802882
C	-1.80801100	-3.45505300	-0.4505510
C	-1.40877500	-4.69601900	-0.73030000
H	-2.01179500	-5.56245600	-0.47285900
H	-0.46470200	-4.89395600	-1.234391
H	-2.76208300	-3.30361000	0.055332
H	-1.65650100	-1.57639700	-1.4617830
H	-0.14752000	-2.46439300	-1.38217200
0	-0.89248000	0.64131600	-0.895241
C	-0.42794300	1.10543300	-2.16326
H	-1.30499900	1.56580600	-2.623482
H	0.35956100	1.85911700	-2.07145700
H	-0.07040200	0.28483600	-2.79278500
0	1.23090800	-0.22898000	-0.70451800
C	2.32651500	-0.89326200	0.00303700
C	2.41211900	-2.33318900	-0.36716600
H	2.85102300	-2.62450900	-1.31654000
H	1.95964900	-3.09812700	0.25241400
C	3.55839500	-0.09317600	-0.41686600
Br	5.17238300	-0.79138200	0.47830500
H	3.47626400	0.95292900	-0.12705500
H	3.73945300	-0.17270700	-1.48918100
	2.17685300	-0.78050400	

3.78			
C	0.00000000	0.00000000	0.00000000
C	0.00000000	0.00000000	1.53295900
C	1.14454200	0.00000000	2.23498100
C	2.48043700	-0.05785700	1.60431800
C	2.52038000	-0.11199000	0.14096300
C	1.40369600	0.02929100	-0.64267700
C	1.47904200	-0.31016500	-2.13248300
C	1.72037600	-1.78107600	-2.38331000
C	2.73690300	-2.25917100	-3.10135500
H	2.86984700	-3.32592800	-3.26024500
H	3.47556400	-1.60497000	-3.56126100
H	1.00372100	-2.46150700	-1.92908100
H	0.54920800	0.00748500	-2.61994300
H	2.29158900	0.26419000	-2.59079200
H	3.50216200	-0.24376500	-0.30712800
0	3.50996800	-0.08407300	2.28078400
H	1.14006200	0.02383400	3.32105400
C	-1.37680600	0.03355800	2.16712000
C	-1.40075100	-0.19589100	3.65332600
C	-1.85718500	0.68197700	4.54690300
H	-1.87247800	0.45995300	5.61054500
H	-2.23811800	1.65644000	4.24748200
H	-1.02520700	-1.16099800	3.99512400
H	-1.97973700	-0.74096800	1.67098400
H	-1.86295700	0.98758500	1.92202000
0	-0.64950200	-1.18968100	-0.42762500
C	-1.83753800	-1.09722700	-1.21904400
H	-2.16468800	-2.13196000	-1.34566200
H	-2.62158800	-0.52121100	-0.71952900
H	-1.64867000	-0.65595200	-2.20376900
0	-0.77087400	1.10771600	-0.45891700
C	-0.10591700	2.35451200	-0.22577400
C	-1.02681900	3.44661300	-0.75375700
Br	-2.73507700	3.50042700	0.25257500
H	-0.58059000	4.43284100	-0.63398800
H	-1.29694600	3.27143500	-1.79514800
C	1.21937300	2.34787600	-0.92052600
H	1.22607200	2.34417400	-2.00699100
H	2.07681500	2.80266900	-0.43490000
H	0.03750000	2.50292300	0.85218700

C $\quad-1.83753800-1.09722700-1.21904400$
H $\quad-2.62158800-0.52121100-0.71952900$
H $\quad-1.64867000-0.65595200-2.20376900$
$0 \quad-0.77087400 \quad 1.10771600-0.45891700$
C $\quad-1.02681900 \quad 3.44661300-0.75375700$
$\mathrm{Br}-2.73507700 \quad 3.50042700 \quad 0.25257500$
H $\quad-0.58059000 \quad 4.43284100-0.63398800$
H $\quad-1.29694600 \quad 3.27143500-1.79514800$

H $\quad 1.22607200 \quad 2.34417400-2.00699100$
$\begin{array}{ll}\mathrm{H} & 0.03750000 \\ 2.50292300 & 0.85218700\end{array}$
3.79

C	00000	0.00000000	
C	-0.56674800	1.02344200	0.98864600
C	-1.24501000	0.61800200	2.
C	-1.51615900	-0.79690800	2.402
C	-1.16580300	-1.76958600	1.40551
C	-0.66731300	-1.42254700	0.03721900
C	-1.82952200	-1.62361000	-0.99217300
C	-3.01621500	-0.71644700	-0
C	-4.23670600	-1.12644100	-0
H	-5.06466800	-0.43078100	-0.35772500
H	-4.45782800	-2.17485400	-0.27236700
H	-2.83520900	0.34104800	-0.99527
H	-1.40333400	-1.47177700	-1.989
H	-2.15159500	-2.67041000	-0.923182
C	0.54941600	-2.30813900	-0.33230900
C	1.70118000	-1.60489300	0.39040100
0	1.36545800	-0.20722000	0.345
C	3.05513400	-1.83701700	-0.249535
B	4.51064000	-0.96710800	0.76341700
H	3.30128600	-2.89943000	-0.26793600
H	3.10100000	-1.42089600	-1.25580200
H	1.74300700	-1.91550200	1.442844
H	0.70476200	-2.28969100	-1.417901
H	0.42741900	-3.34926900	-0.01913500
H	-1.38324400	-2.81037100	1.635992
O	-2.02599100	-1.12970200	3.487406
H	-1.61473900	1.33803400	2.8032000
C	-0.28477700	2.49405800	0.75962200
C	1.13543900	2.91096000	1.08444500
C	1.85888200	3.76885500	0.36429600
H	2.85876500	4.06507900	0.66917
H	1.47779000	4.21481500	-0.55265200
H	1.55348100	2.48776200	1.99691500
H	-0.96725100	3.06138400	1.40762100
H	-0.52435600	2.76812700	-0.27381800
\bigcirc	-0.13112400	0.49630400	-1.32927500
C	1.02752000	0.97063400	-2.01241000
H	0.64452600	1.49548100	-2.89174800
H	1.62511000	1.65338900	-1.40430400
	1.66762800	0.14490600	-2.

$0.14490600-2.34974500$

3.78b

3.79b

3.77			
C	0.0000000	0.0000000	0.00000000
C	-0.38694400	-1.37739800	0.54005900
C	-0.98591800	-1.52280600	1.73316100
C	-1.24509700	-0.38408400	2.63400600
C	-0.92138200	0.96294900	2.11951700
C	-0.39061400	1.17520100	0.90363900
C	-0.20178000	2.55106300	0.29458600
C	-0.29140800	3.71150300	1.25009000
C	0.72112700	4.54252300	1.50438100
H	0.61460500	5.37917200	2.18982900
H	1.69219300	4.41514200	1.02959100
H	-1.25272500	3.87532200	1.73720900
H	0.75637600	2.58560200	-0.23219800
H	-0.97289400	2.65288800	-0.48486300
H	-1.18468100	1.78360600	2.78010100
0	-1.72622900	-0.54388400	3.75309300
H	-1.29232500	-2.49975600	2.09962300
C	-0.14389800	-2.55532200	-0.38871500
C	-1.41470800	-3.02852000	-1.05596200
C	-1.89476700	-4.26896700	-0.96874900
H	-2.81414900	-4.56036600	-1.46936400
H	-1.38737100	-5.04322300	-0.39616700
H	-1.94876100	-2.27243900	-1.62827300
H	0.29442100	-3.38377500	0.18059100
H	0.58856600	-2.26202800	-1.14961000
0	-0.73655200	0.14180700	-1.21827700
C	-0.05367700	0.48040800	-2.42968800
H	-0.85365700	0.68286200	-3.14635700
H	0.57980900	1.36480200	-2.32358700
H	0.56107600	-0.34782900	-2.79815800
0	1.37750000	0.04667100	-0.36947900
C	2.50998600	-0.13224500	0.54639600
C	2.19536500	-0.89894500	1.78824000
H	1.73163000	-0.41544300	2.63970700
H	2.48094300	-1.93901100	1.88641100
C	3.01312500	1.24867500	0.99973400
Br	3.46122400	2.46325100	-0.50719200
H	2.26071700	1.77861200	1.58281400
H	3.93335300	1.15504900	1.57430200
C	3.53899600	-0.88174100	-0.34735600
C	4.87928900	-1.19595800	0.28735100
C	5.12842400	-2.46276300	0.83501600
C	6.36021200	-2.76893000	1.41502900
C	7.37250600	-1.80930500	1.45335300
C	7.14399700	-0.54714900	0.90250400
C	5.91119600	-0.24447900	0.32313700
H	5.74730000	0.73835700	-0.11126800
H	7.92960500	0.20385600	0.91584300
H	8.33422200	-2.04564600	1.90059000
H	6.53018500	-3.75907800	1.82968800
H	4.35371700	-3.22545600	0.79227300
H	3.67446600	-0.27550800	-1.24795500
H	3.05320000	-1.81202900	-0.65896900

3.80
C 0.00000000
0.00000000
0.00000000
0.00000000
1.53637600
2.23354300
$2.46376300-0.27444200 \quad 1.60025400$
$2.47082300-0.40953500 \quad 0.12903800$
$1.37378800-0.25782400-0.63260900$
$1.40134200-0.26110800-2.15019200$
$2.66976000-0.77537900-2.77949700$
$2.74071700-1.90157900-3.49109000$
$3.67287200-2.23626800-3.93863000$
$1.86481600-2.52774600-3.64958400$
$3.56656400-0.17080700-2.64314800$
$0.54684200-0.83447000-2.52198900$
$1.22901400 \quad 0.77799700-2.47229000$
$3.44535600-0.60066600-0.31033700$
$3.50006100-0.37001100 \quad 2.25860200$
$1.18169500 \quad 0.15371300 \quad 3.30958700$
$-1.30177700 \quad 0.42704800 \quad 2.20958300$
$-1.27412800 \quad 1.87159900 \quad 2.65136100$
$-1.47991500 \quad 2.27784900 \quad 3.90432800$
$-1.45444700 \quad 3.33035800 \quad 4.17336800$
$-1.68461700 \quad 1.57588700 \quad 4.71076100$
$-1.06363800 \quad 2.59538800 \quad 1.86687000$
$-1.48739800-0.20976200 \quad 3.08188900$
$-2.13200700 \quad 0.27128200 \quad 1.51110400$
$-0.40694700 \quad 1.32035700-0.36460800$
$-1.41641000 \quad 1.50015100-1.36125500$
$-1.48942300 \quad 2.58354900-1.48483600$
$-1.14666800 \quad 1.04409700-2.31906800$
$-2.38456200 \quad 1.10286100-1.04252600$
$-0.97529700-0.89406500-0.52230100$
$-1.05995700-2.25146400 \quad 0.00278200$
$-0.40254200-2.37197500 \quad 1.34716600$
$0.62639700-2.70898000 \quad 1.41048500$
$-1.01157000-2.52876300 \quad 2.22990200$
$-0.32084800-3.20656000-0.95002000$
$-1.00007600-3.14539200-2.81357800$
$0.73665600-2.95516300-1.02234700$
$-0.43911400-4.24196100-0.63392000$
$-2.58911400-2.52525100 \quad 0.06295000$
$-3.00714900-3.89326700 \quad 0.56497200$
$-3.38465800-4.07440500 \quad 1.90365700$
$-3.77505800-5.32634500 \quad 2.38099500$
$-3.79958500-6.42526400 \quad 1.52151500$
$-3.43855700-6.25889000 \quad 0.18334000$
$-3.04916000-5.00555700-0.29075000$
$-2.77999200-4.88601500-1.33706000$
$-3.46642900-7.10534200-0.49789200$
$-4.10607500-7.40088100 \quad 1.88891200$
$-4.06646300-5.44013200 \quad 3.42184400$
$-3.39005500-3.22035600 \quad 2.57786700$
$-2.98070500-2.34972300-0.94372400$
$-3.01643700-1.75244600 \quad 0.70962800$

3.81
C 0.00000000
C -0.37730300
00000
0.00000000
C $\quad-0.37730300$
0.00000000
0.82553000
1.94697200
2.60590400
2.00529600
0.81884100
0.15767000
1.01470000
1.44444400
2.05597900
1.19861300
$\begin{array}{rrr}2.29925500 & -3.57077200 & 1.27914600 \\ -0.26994800 & -2.69465000 & -0.20660800\end{array}$
$1.36518500-2.36590300-0.74152800$
$1.77908800-1.58846000 \quad 2.57549600$
$1.98122500 \quad 0.76232200 \quad 3.63216500$
$0.64048500 \quad 2.57605700 \quad 2.34675300$
$-0.53462700 \quad 2.53253300-0.09610700$
$0.74906200 \quad 3.24691100-0.43490400$
$0.96838800 \quad 4.54017600-0.19142000$
$1.90422000 \quad 5.02126600-0.46286000$
$0.22013400 \quad 5.17190900 \quad 0.28481200$
$1.51921600 \quad 2.64544900-0.91089700$
$-1.20599400 \quad 3.23987700 \quad 0.40725100$
$-1.04147600 \quad 2.22037100-1.01854700$
$0.85254900 \quad 0.30924500-1.08891500$
$0.44799900-0.03676100-2.41392500$
$1.28818000 \quad 0.25549000-3.04834000$
$0.26665900-1.11110500-2.52379400$
$-0.45033200 \quad 0.50473300-2.72751500$
$-1.24371000-0.47656600-0.50037200$
$-2.32354300-0.21636200 \quad 0.41391700$
C $\quad-1.77351600 \quad 0.85538900 \quad 1.39902900$
$\begin{array}{lllll}\mathrm{H} & -1.65660700 & 0.43374100 & 2.40228200\end{array}$
H $\quad-2.44881800 \quad 1.70884000 \quad 1.49214200$
C $-2.64029000-1.48415100 \quad 1.21825700$
$\mathrm{Br}-3.14580300-3.02850900 \quad 0.08451400$
H $\quad-1.76953800-1.82029800 \quad 1.77919200$
H $-3.48114900-1.32298000 \quad 1.89251700$
C $\quad-3.50933100 \quad 0.26304200-0.46129800$
C $\quad-4.78131600 \quad 0.63214000 \quad 0.27631800$
C $\quad-5.06977000 \quad 1.97228900 \quad 0.57276500$
C $\quad-6.23743400 \quad 2.32626200 \quad 1.25097600$
C $\quad-7.14412900 \quad 1.34078700 \quad 1.64262900$
C $\quad-6.87678700 \quad 0.00325300 \quad 1.34456900$
C $\quad-5.70916500-0.34712500 \quad 0.66593700$
H $\quad-5.51533400-1.39021900 \quad 0.42928600$
H $\quad-7.58226200-0.77116700 \quad 1.63418300$
$\begin{array}{llll}\text { H } & -8.05549400 & 1.61304200 & 2.16798400\end{array}$
H $\quad-6.44065400 \quad 3.37206500 \quad 1.46592600$
H $\quad-4.37974100 \quad 2.75047300 \quad 0.25310700$
H $\quad-3.70742500-0.53474700-1.18481800$
H $\quad-3.15173500 \quad 1.12675800-1.03110000$

3. 80b

3.81b

APPENDIX 4

A4.1 A Graphical Journey of Organic Architectures That Have Improved Our Lives

Just like there is a great need for advancing the frontiers of the field of chemistry, chemists are often faced with the equally important task of finding new and more effective ways to both communicate the results of their research activities and justify why investing in chemistry is important for society. Although classically inspired by the architectures of natural products in many of our chemical development endeavors we have become equally inspired and intrigued by the diverse pharmaceutical structural space. ${ }^{1}$ We decided to graphically capture this wealth of information on single page (posters), ${ }^{2}$ which in turn would allow anyone to easily visually mine it for a wealth of interesting information, statistics, structural patterns, etc. The fruits of our labor can now be found at the following web address, where high resolution PDF files of each of the posters can now be downloaded and printed in any size: http://www.chem.cornell.edu/jn96/outreach.html. In addition to the electronic form, a graphical representation of one of the drug posters can be found in A4.2.

Figure A4.1. Graphical Representation of the 2008 Top Selling Drugs

We and others (in academia and industry) have learned over the last few years that hanging large printed versions of the posters in public spaces results in a magnetic effect, wherein people tend to be attracted by the visual language of organic chemistry. ${ }^{3}$ The posters can also serve as useful tools for educating the public, teaching both undergraduate and graduate students, and serving as a spring board of ideas for researchers interested in the development of new synthetic methods and strategies. The following questions are examples of the wealth of information that can be gathered about the organic architectures used for pharmaceuticals simply by looking at the structures shown on these posters, and without reading a book! ${ }^{4}$

Sample Questions:

1. How many of the top 20 brand name drugs contain:
a) an aromatic ring?
b) a heterocycle?
c) a fused ring system?
2. Which of the top 20 brand name drugs:
a) promote cardiovascular health?
b) affect neurotransmitters?
c) suppress immune system activity?
d) decrease stomach acid production?
3. In addition to carbon, hydrogen, oxygen, and nitrogen what are the three most commonly used elements found in brand name drugs?
4. Identify at least one brand name drug that contains:
a) an adamantane
b) an alkyne
c) an azide
d) a nitrile
e) a cyclopropane
f) no rings
5. Locate a brand name drug that is clearly derived from:
a) a steroid
b) an alkaloid
c) a nucleoside
6. Randomly choose 3 generic drugs and assign the hybridization of each carbon atom. Is there a trend in the relative number of $\mathrm{sp}, \mathrm{sp}^{2}$, and sp^{3} hybridized carbons found in generic drugs?
7. Five and six membered rings are most frequently used for pharmaceutical structures. In general, are small rings (3-4) or large rings (7+) more common in the generic drugs?
8. Randomly choose 3 generic drugs and identify all the asymmetric carbon atoms.
9. Are there more macromolecules (biologics or polymers) present in the brand name or generic drug poster?
10. Comparing the brand name and generic drug posters, which has a greater number of drugs with more than one active ingredient (combination therapies)?

Visually exploring the drug posters either on your own or by answering the above questions leads to a greater understanding of the organic architectures that affect our everyday life. Displaying this information in the form of an interactive website that enables simple mining of the data would serve as a nice supplement to this manuscript and will be explored in the future.

		 2095 Rank: Oanpary: 2901 Salas: 3300 nilion Frofie: A plineet agongrion linkibor used $=$ semuan drow and neat atherk nim:	4 Advalr Diskus	5 Prevacid Woo Rank Company: 200t Sales: 4182300 nilion Tronik: A protion punp intiblar unedio tex gatric owha divate.
Lantus	22 Levaquin 230T Rank: Company: 20ne Salen: 19 Patis: pbese-phese Afuciophholone anthivis uned wivet secialic infetions.		Lyrica Pooffe: An andione duent aned io neat nurve painand amourne.	Diovan 2000 Rank Compang: 230e Sales: 20 (1) novartis Proflie: to aver heominenien and neat falar.
	200T Rark: Company: 20xe Sales: do blave Hant 50.50 nillon Mafie: Acoricionowit ated io treat almpik and noraberge nuel mingrome.		Provigl\| 2x0T Rank Compang: 2006 Sales: 34 \|et Coplisien 30 nes nillon Profie: their navosepe.	45 Geodon Oral 2000 Rank Company: 200E Salus: 38
		 2015 Rank: Danpany: 2901 Salas: os Profir: pout ALheivengpe deronth.	Arimidex 200TMark: Oomparyc 2000 Sales: ∞ sumbera 2057 nilion Profle: An aromatave linkber uvel wo treat bivestanaer.	Comblent 2000 Pank Compary: 2000 Salas: 74 (a) Veltrigger $\$ 0.50$ nilion Proflis: ievaro stinibut abadta tret COPD.
		 2007 Rark: Oorparyy 2901 Salas 07 동 Ahbett Profie: An aitrowndavt uned mombl 		2000 Rank: Compang: 2300 Salas: 15 [- Mhest 5045 Dilion Profle: tiver fteminanisal arthitic.

 2007 Plank. Comeany: 2001 sales stalimeca Prorliw: Ao dintivechato innd to trex and poliar reing		8 Etfexor XR 2007/lark: Oomparyc 2030 Salisa: Wyeth Proffe A bevainin and noveplophtine ief	Oxycontn	
Tricor Profle: Albistoring popt unet bo teact high dicmimei and tivomita mix.	Flomax	RIsperdal 2XOT Rank: Oomparyc MOXD Salas: 14 j.22 Dillon Pnofie: An andiaychork ateed by inet athoophorevia asi tionlar merle.	29 Diovan HCT 2007 Rark: Comcany: 2000 Shlot: () nowartis Proflis: Guans lated wis twat fypmenenain	Zetla 2x00 Rank Dom¢ang: 2oce falea: 27 ato hathy min2.
46 Truvada 2807 Rank: Comeany: 2001, Sales 0 Gilead Protile: Tro riverne tranwirgtaide linibeors vied lis ireat ifly	47 Lunesta 2x0T Rank: Dompany: 2000 Salas: bserncor Proffa: A typiatic agmet andi ta nat haarrie.	48 Enorel 2SOT Rank: Oompary: 2000 Salas: AMGEN Prativ: fowiohbier uted = thas aftivtio and pariala		50 CellCept 2000 Rank: Compang: 2000 Salas: (Ioche) Profis: argal travipant nquilice.
Clalls	67 Flovent HFA 2x07 Rank: Dompany: 20xt Salas: Profle: 		69 Premarin Tabs	Suboxone
Benicar		AndroGel	89 Enbrel Surecick	Avelox OgD Havive Man? Profie: hackera infetions

				15 Zyprexa
 	92 Lovaza innion がひにの 			95 Humira Pen

106 Novolog Mix 2007 Rank：Comcany：20ell Sales 116 H2 Frofle： 20 freat diek aftes．		Mirapex 2007 Rank：Oompanyc 20）Salas： 122 （a）Delringer $\$ 234$ Dilion 9 inethint piste 	2007 Rark：Company： 2000 Shlot：	 $2 x 00$ Rank：Oompany： 2 200 Sales： 5012 Dillon
Epzicom	127 Levemir	2NOT Rank：Oompary：Mod Salas： 111 ｜Nbeweiphews		 2000 Rank：Oompang： 2000 falea： 120 Pnofie （3）RER An ouzrolinone untitiotic uled st tret anioces hactercel ilfectane．
Vigamox 2507 Rank：Comeany： 2001 fales 151 Alcon Proflie Aflarop ino ine anthiote uade is trear evelilletione．	147 Foxamax Plus D 2x0T Rank：Dompany：2x0 Sales： 139 MTRCK 3022 Nilion Profile： Abigehoghonats and thawn D uebt to thear and govert adeponise．	Maxalt 2007 Rank：Oompary：20ye Salas： 419 －F MERCK Poofis： tisa nigranes．		 2007 Rank：Compang：2000 Salsa： \boldsymbol{c} \qquad
166 Budeprion SR 2007 Rank：Comeany：20el Sales 102 12 \qquad an 19 nilicn Frot 		2007 Rank：Oompany：Dove Salan： 134	 2507 Rank：Company 2000 Salat： 19	2×00 Rank：Oorgang： 170 170
Frofle Conkinatkin of a conizodmued ayt a tarnin D analogeas usent far peotias	 2307 Rank：Dompary：pone Salas： t35［f Copluite 30.55 nilion Porfic： 	Valcyte 2x07 Rank：Dompany：2005 Slalas： NA	Klor－Con 2007 Rank：Comcany 2000 Salat： Dut＋astit Profile applermitation	 2N0V Rank：Dompany：Mo0d Salas： 179 sutcNmers Mップ Prohte：

111 Lantus SolosTAR	Norvir	 230T Rank: Oompang: 2030 Salas: i3 (i) novartis 30.36 nillon Profie: Lumion swat NDiO.	114 Actoplus Met 2007 Rank: Comcany: 2001 Sales: (ii) Proflie: Concination of the anthymplowerias ated lat ineat ppe I dateles	Veslcare
131 Tussionex 2000 Rank: Comqang: 2000 Sales: 517 50.25 nillon Profle: A anogh-aoperivianiand anthiatanine vaet io triat coicio and alargine.	132 Invega	 230TRark: Oompany: 2090 Salas: 24 MERCK 20.24 Dilion Profie: A tiyphowhonale unet to treat Pagers diversh and ocemporos.		Levtra
	Patanol	 2306T Rank: Oompany: 2001 Sales: 13 sutoleread $\$ 20.21$ nilion Moflie: A noniberctal andandrogen ubet is awet prodeth cancer.	2007 Rank: Comeany: 20el Sales: 170 Proflie: glacoselovemy aget	
171 Rhinocort Aqua	 990 Hayber thent Proris: Au antrimolarik ajent uned lis irnat nawnet nualgnant 2rain luwen.	173 Micardls HCT 0 2x07 Rank: Oompany: 200 Stalas: 121	 2007 Rank: Comeany: 2001 Sides: 10.10 nilion MANHAXT	
 2000 Rank: Compang: 2500 Sales: Prorle: unet io trwat a warlety al inferiens.			194 Allegra-D 24 Hour	Opana ER 2015 Rank: Oarpany 2901 sules: Wh प-raty 30.10 Nike Frarise moserule to tevas pain.

REFERENCES

(1) Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 10221037.
(2) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Ed. 2010, Accepted
(3) Njardarson, J. T., The development of new synthetic methods. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009 2009, ORGN-220.
(4) Kleemann, A.; Engel, J.; Pharmaceutical Substances: Synthesis, Patents, and Application, $4^{\text {th }}$ ed.; Thieme: Germany, 2001; p 2488.

