PHY 209 Space and Time in Elementary Physics

Vectors—Part II

In the previous hand-out, we introduced the vector. We discussed (in a purely mathematical discussion [no physics yet!])

scaling

i.e., given a vector A, what is the vector kA?

vector-sum

i.e., given two vectors \vec{A} and \vec{B} , what is the vector $\vec{A} + \vec{B}$ using the "parallelogram law" or the "tip-to-tail method"

Here, we continue our discussion of vectors.

(Euclidean) Dot-Product

Given two vectors \vec{A} and \vec{B} , their dot-product $\vec{A} \cdot \vec{B}$ is a multiplication rule which returns a scalar quantity (i.e., a number, essentially). That rule is

$$\vec{A} \cdot \vec{B} = \left\| \vec{A} \right\| \, \left\| \vec{B} \right\| \cos \theta_{\text{between \vec{A} and \vec{B}}}.$$

(Often, one writes $\vec{A} \cdot \vec{B} = AB \cos \theta$, where A (without its arrowhead) refers to the magnitude of the vector \vec{A} .)

Why does a $\cos \theta$ appear? Observe the geometrical meaning of $B \cos \theta$.

 $B\cos\theta$ is the projection of \vec{B} along the direction of \vec{A} . (You can think of \vec{A} as the ground. Then, with the sun directly overhead, $B\cos\theta$ is the signed-length of the shadow. You get a positive-sign if the shadow's arrow points in the same direction as \vec{A} . You get a negative-sign for the opposite direction.)

This makes sense since $\cos \theta > 0$ for $|\theta| < 90^{\circ}$, i.e., $\cos \theta > 0$ in the first and fourth quadrants.

So, in some sense, the dot-product is a measure of the "overlap" of two vectors. It measures "how large a shadow one vector casts on the other, appropriately scaled by the magnitudes of the vectors".

Observe that $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ (i.e., the order doesn't matter). Instead of considering the projection of \vec{B} along \vec{A} , consider the projection of \vec{A} along \vec{B} .

As we said before, the projection of \vec{B} along \vec{A} is $B\cos\theta$. Now, the projection of \vec{A} along \vec{B} is $A\cos\theta$. Of course, generally, $A\cos\theta \neq B\cos\theta$. What is generally true is that

$$\vec{A} \cdot \vec{B} = A(B\cos\theta) = AB\cos\theta = BA\cos\theta = B(A\cos\theta) = \vec{B} \cdot \vec{A},$$

regardless of which vector is used to calculate the projections.

• Calculate $\vec{A} \cdot \vec{B}$ for each pair of vectors below. I have given you the angle θ and the magnitudes of the vectors (in meters) in each case. Include in your answer the appropriate units for the dot-product! (Don't be careless. Think about what those units would be).

1 / 100

1 900

1000 71

3 3

2 1900

Here are more useful facts

- $\vec{A} \cdot \vec{A} = AA \cos 0 = A^2$. In other words, the magnitude-of- \vec{A}

$$\left\| \vec{A} \right\| = \sqrt{\vec{A} \cdot \vec{A}}$$

- If $\vec{A} \cdot \vec{B} = AB$, (i.e., if $\cos \theta = 1$,), then \vec{A} and \vec{B} are parallel.

(since $\theta = 0^{\circ}$)

- If $\vec{A} \cdot \vec{B} = -AB$, (i.e., if $\cos \theta = -1$,) then \vec{A} and \vec{B} are anti-parallel (i.e., along the same line and pointing in the opposite direction).

(since $\theta = 180^\circ$)

- If $\vec{A} \cdot \vec{B} = 0$, (i.e., if $\cos \theta = 0$,) then \vec{A} and \vec{B} are perpendicular or orthogonal.

(since $\theta = 90^\circ$)

Using the above facts, let us calculate the square of "the magnitude of the vector-sum $\vec{A} + \vec{B}$ ".

$$\begin{split} \left\| \vec{A} + \vec{B} \right\|^2 &= (\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B}) \\ &\stackrel{\text{FOIL}}{=} (\vec{A} \cdot \vec{A}) + (\vec{A} \cdot \vec{B}) + (\vec{B} \cdot \vec{A}) + (\vec{B} \cdot \vec{B}) \\ &= \left\| \vec{A} \right\|^2 + 2(\vec{A} \cdot \vec{B}) + \left\| \vec{B} \right\|^2 \end{split}$$

This is essentially the Law of Cosines $c^2 = a^2 + b^2 - 2ab \cos C$. From the above calculation, we get the minus-sign in the Law of Cosines when we correctly associate the symbols in the two formulas.

c /a
b c

 $\begin{cases} \cos C = \cos(180 - \theta) = -\cos \theta \\ \cos, \ 2(\vec{A} \cdot \vec{B}) = 2ab\cos \theta \\ = -2ab\cos C \end{cases}$

Now, consider two cases:

• If $\vec{A} \cdot \vec{B} = 0$, i.e., if $\cos \theta = 0$, i.e., when the vectors are perpendicular, then

$$\left\| \vec{A} + \vec{B} \right\|^2 = \left\| \vec{A} \right\|^2 + \left\| \vec{B} \right\|^2$$

but this is nothing but the Pythagorean Theorem, where \vec{A} and \vec{B} are the legs of a right-triangle (i.e., the angle θ between \vec{A} and \vec{B} is 90°, which is supplementary to the right-angle inside the triangle) and $\vec{A} + \vec{B}$ is the hypotenuse.

• If $\vec{A} \cdot \vec{B} = AB$, i.e., if $\cos \theta = 1$, i.e., when the vectors are parallel, then

$$\|\vec{A} + \vec{B}\|^2 = \|\vec{A}\|^2 + 2(AB) + \|\vec{B}\|^2$$

$$= A^2 + 2(AB) + B^2$$

$$= (A + B)(A + B)$$

$$= (A + B)^2$$

$$= (\|\vec{A}\| + \|\vec{B}\|)^2$$

So, carefully taking the square-root of both sides,

$$\left\| \vec{A} + \vec{B} \right\| = \left\| \vec{A} \right\| + \left\| \vec{B} \right\|.$$

Thus, only when the vectors are parallel is the "magnitude of the vector-sum" equal to the "sum of the vector-magnitudes".

• Calculate $\|\vec{A} + \vec{B}\|$ for each pair of vectors below. <u>Hint</u>: Calculate $\|\vec{A} + \vec{B}\|^2$ using $(\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B})$

Failure to recognize this fact is probably one of the biggest mistakes made

As a check for yourself, draw in A+B and measure its magnitude.