PHY 208 . _ .
Space and Time in Elementary Physics

Vectors—Part III (components)

Up to now, we have been emphasizing the geometric approach Lo veclors.
This geometric approach is very concise. A picture is worth ¢ thousard words
{and numbers)! In describing a physical system mathematically, it is often nseful
to use a concise mathematical object which neatly encapsulates the physical
principles. In some sense, the geometrical picture of a vector as an arrow vividly
conveys the notion of a foree (loosely speaking, & push or a pull) being applied.

Vector Componenis

There is another approack to vectors whick is very useful when it comes
down to making measurcments of physical gnantities.

For example, in discussing the motion of & particle in space, its “instan
tancous rate-of-change of position with time” (called its velocity) is neafly
described by & vector (called, of course, its velocity vector). Later, we will

learn that the velocity vector is tangent to its trajectory.
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Suppose we (on the ground) want te kmow how fast the particle is traveling
parallel to the ground. That is, “how fast would I have to run on the ground
1o keep the particle divectly overhead as 3t travels?” How would we extract that
information from the velocity vector?
To answer this, one needs to realize the following:

any vector in two-dimensions can be writlen as the sum of two mutually perpen-
dicular veclors, i.c., as two vectors, each of which is perpendicular to the other.
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A pictorial way fo think of this is that “any veclor in two-dimensions con be
thought of as ‘the hypotenuse of 6 right-triangle’ *.




14 shouid be obwvious that a two-dimensional vector nay be writien meny
different ways as the sum of two mutually perpendicular vectors. Or, in the
pictorial way, a two-dimensional vector may be thought of as the hypotenuse of
many different right-triangles. Each way is just as good as any other weay

gince they describe the same vector,

H, however, we ate given a rectangular (Cartesian) coordinate system (say,
with an z-axis and a y-axis), we are provided a preferred set of perpendicular
vectors: vectors pointing along the positive directions of the coordinate axes.

Thus, given some vector 4, we can write A as the sum of a vector along the
z-axis and & vector alulng the y-axis. Algebraically, this is expressed as:

where 4.1 is & vector along the z-axis (called the z-component of vector AJ
The symbol § refers to a vector of length 1 pointing along the positive-z direction;
this is called the unit-vector in the »-direction. The hat ~ reminds us that
this is & unit-vector. {On & sheet of graph-paper, you can think of # as a “tick-
mark” along the #-axis which is one unit from the origin.) The signed-number
A is the scale factor that one must scale the unit-vector i by, in order to get
the z-component of the vector A

With our discussion of the dot-product above, we can express this idea an-
other way. The “z-component of the vector A" is a vecior pointing in the
z-direction whose length is obtained by projecting the vector A onto the unit
vector in the z-direction. In other words, Y f.

angle between
A and §

Similarly,

i
n angle hetween
A and §
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If we express these formulas in terms of a single angie ¥, namely, the argle
drawn counterclockwise from the positive-z szés (polar coordinates!), then we
can write

Ay =i -A=Acosh Ay =j-A= Asin®. [ A ‘
4

I cannot emphasize enough that: this definition using cosf and sin® requires | EMPHASIZE.
that the angle 0 is the angle drawn counierclockwise from the pesitive-z azis. }gﬂ:gﬁﬁ}%ﬁu
When followed correctly, these formmlas already account for minus-signs that
arise when the vector is not in the first quadrant. That’s one reason why
we studied polar coordinates!

[¢] Find the z-components and y-components of each of the vectors be-

low.
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E Using the formuias that convert between rectangnlar and polar cooe-
dinates, show that 4 = /A2 + Ay? and that § = arc-tan

Ay

Az

Observe that if you use & different sef of azes, you will get different values
of A, and of Ay... but, you will always get the same value when you
calculate the magnitude of A: ,/42 + AL

Take & sheet of translucent graph paper. On the top half of _'the
sheet, draw a set of z- and y-axes. Place the tail of the vector 4 at

the origin. Diraw in A, Find the z- and yeomponents of A. Caleulate
oA+ Ag.

[ﬂRepe&t this procedure using the bottom half of the graph paper.
Still place the tail of the vector at the origin. However, this time

ratate the vector about the origin (so that it makes & differrent angle
with the z-axis}). Find the z- and ycomponents of A, Caleulate
o A3+ AL

E Diepending on how carefully you did this, your values for

of AT+ AL
should agree. As a check, line up the vector along the z-axis, and
read off the magnitude of A.
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Vecior Addition - componeniwise
In terms of components, vector addition can be done algebraically. He o good
baokkeeper. Keep track of your symbols and “den’t add apples and oranges”,
For instance, given the vectors 4 = -2+ 37 and B = bi 4 1, let C be the
vector-snm.
A+ 8
{—2% +37) + (5 + 17}
(=2 +8)i+ (3 +1)j
(3)F + (4)]
= ¥+ 4
Generally, giver 4 = 4,3+ A, and B = Byi+ Byj,

'd]

& = 4 +§
(A3 + Ayf) + (Boi+ By )

(Az + B )i+ (4y + By)j

so, Cr = As + B; snd €y = 4, + By. In words, the “z-component of the
vector-sum® is equal to the “sum of the #-components”, and similarly for the

y-components.
It is important not to leave out the unit-vectors fand j. If you do, you might

end up “adding apples and oranges” and that’s not good bookkeeping!
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The Dot-Produet - componentwise 3 .
Recall that we defined the dot-product between two vectors A and B as

A-B=ABcosh,

whete # is the angle between the two vectors.
If we know A and B in terms of their components (relative to & given set of
axes), we can write their dot-product as
A-B = A B: + AyBy,

in other words, as “the sum of the-product-of-the-z-components ond the-product
of-the-y-components.
To see this, we will need to use a trigonometrie identity:

eos(f, — fp) = cosfq cosfp +sinb,sinfg.

Se,
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s B _.h A-B = AFBcost
| note that §, = 65 + &
| = ABCOS(EA —33}
-i = AB{cosfycoslflpg +sinf,sinbs]

R (O ] = (Acosf,)(Beosfg)+ (Asindy)}{Bsinép}
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Observe once again that if you use & differcnt set of sees, you will get different
values of 4., of 4y, of B., and of B,... but, you will always get the same
value when you calculate the dot-product 4. 8. + A, By,

There is another way to see where this formula comes from.
Let A=A+ Ay§and B=B.i+ B yj- Using the dot-product,

-

A-B
F

(A-:i'l' ij} ) [Bzi‘f' B:a'j}
- (Az#- Bzd) + (Az2- Byj) + (Ayd - Ba¥) + (Ay]- Byj)
ol A Bo(i-8) 4 A By (G- 5) + 4, B (5 8 + 4, B, (7 3}
Now observe that {+f=1and - j=1,and ¥ - j=Uland j-i=10
4:B.(1) + A28, (0) + AyBe(0) + A, By (1)
= A.B.+4,B,
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[e]For each set, use z- and y-components of A and B to find their
vector-sum and their dut-pmdur.t.

¢ AR = {;1,4-4 p
A= D’i+4§ & //)

T
1
'-ﬁ-
Lol
_f.
o
]
1
H
o
+
[
L=

- O L
B= Gi+ﬂj
4 |
L A= 2{{.-@-{}5 A- —-ihﬂ;
m-:* . " —AL ot ury ’_ﬁ
B=41 +Ua B= 4140,
Y
s A LA o lj A
f=-1 b 44 A= 1144y
Bz Bi+ 2
B= zﬁ.-i-ig

A= 42?.+23




