PHY 209 Space and Time in Elementary Physics

Linear Approximations—Prelude to Differential Calculus

The Slope

Recall that the "slope m of a line" is a measure of the rate-of-change of the linear function x = mt + b with respect to the independent "running" variable t. (Since this is a line, the slope m is a constant. The "intercept b" is the value of the function when t = 0; it is always a constant.)

There is a useful mnemonic: "slope" is "rise by run". Given a point (x_1, t_1) on the line x = mt + b, the slope m can be calculated by finding another point (x_2, t_2) on the same line, then calculating the "rise" $x_2 - x_1$, and dividing it by the "run" $t_2 - t_1$:

x=mt+b

"Zooming In"

We wish to study the behavior of functions as we "zoom in" on them.

Fill in this chart:

(t+h)	ŧ	h	= t + h
t = 1, h = 1			
t = 1, h = 0.1			
t = 1, h = 0.01			

Plot the function x = t on each of the graphs below:

Fill in this chart:

$(t+h)^2$	t^2	2ht	h^2	$= t^2 + 2ht + h^2$
t = 1, h = 1				
t = 1, h = 0.1				
t = 1, h = 0.01				

Plot the function $x = t^2$ on each of the graphs below:

Fill in this chart:

$(t+h)^3$	t^3	$3ht^2$	$3h^2t$	h^3	$= t^3 + 3ht^2 + 3h^2t + h^3$
t = 1, h = 1					
t = 1, h = 0.1					
t = 1, h = 0.01					

Plot the function $x = t^3$ on each of the graphs below:

 Go back to each function. On the most zoomed-in graph, calculate the slope of the "line".