PHY 209 .
Space and Time in Elementary Physics

Energy and the Harmonic Oscillator
plus a Glimpse of Integral Calculus

Recall that for a particle undergoing a constant acceleration in 2 straight
line, its position x at any time £ is given by

z = #y + gt + Fat?

Now, by taking the derivative of this equation with respect to time ¢, its
velocity v at any time ¢ is given by

v = g + at.

We can solve this last equation for ¢, to obtain a mathematically-equivalent
crmation
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Multiplying both sides by the mass m of the particle, we obtaim

male — xg) = me

Recall the Newton Law of Motion:
the acceleration, e, 1=

2 3

1
girun”.

F = m#d. From this, the magnitude of

a= —

T

Since the acceleration « is constant, the force F is also a constant.

Substituting for a,

F 1
m [E] (£ —2p) = Emvz — 3y

which reduces to
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The quantity on the left is the prod-
uct of “the comstant applied-force F*
and “the displacement {z — zq} from
the starting-position zp to the final-

. position 2", It iz a measure of the
effect of the applied-force F. In
fact, it has a special name—the work
dione by the force.

The equation is interesting because:
Clualifatively, it says that

The gquantity on the right is wvery
interesting. Why? It seems that
“lmy®” is a special measure of the
state of motion of an object. In
fact, it, too, has a special nams—
the kinetic-energy of the object.
Thus, the quantity on the right is “the
difference between the final kinetic-
energy and the initial kinetic-encrgy”.

“the application of a force on an abject has affects the state-

of-motion of that object™.
Quanfifatively, it says that

“the work done by an applied-force is equal to the change
in the kinetic-energy of the object™.

The Falling Apple—Motion Under a Constant Force
Let’s consider the following situation: An apple of mass m falling from a

tree of height h.

Tnitially at rest {vg = 0), it falls from a height o = h. It hits the ground
(2 = 0) with velocity v. There is one force at work: the force due to gravity.
This force has magnitude mg but points downward (so, it picks up a mnus
sign). The “work dome by gravity” would be —mg - (0 — k). The “change in
Kinetic-energy” would be 2mv? — 1m[0]2. If we reduce the algebra, we have:

“the work done” mgh = “the change in kinetic-energy” Imov®.

What this means i that the force of ife

]

earth’s gravitationsl ettruction has done

work on the apple, which resulls in a change in the apple’s kinetic-energy.

It i3 very inkepest-
ing beocaune kol terma
of this diffarence are of
the form “Yone-half the
mess times the sguare
of tha velocity™.



Kinetic-Energy and Potential-Energy

Kinetic-energy, usually denoted by K, can be thought of as “the energy
of motion”. Indeed, K = %rm.r? makes reference to motion becanse of its
dependence on the velocity v of the object.

In special cases, there is another notion of energy: pelential-energy.

Such a special case occurs, for example, when we deal with the force of
gravity. The foree of gravity is a special kind of force—it is an example of what
is called a conservative force. It turns ent that if & force is conservative,
one can define the notion of “an energy of (relative) position™ called the
potential-energy, usually denoted by U. In some sense, it is a stored-up form
of energy—it has the potential to do work on an object. In the case of gravity,
the potential-cnergy is

U_qrau = g,
where z is the height above the ground.

Due to the force of the earth’s gravity, it takes work to raise an apple from
the ground to a height # = h. It takes work because I have to oppose the force
due to gravity as I pick up the apple and raise it to a height z = k. In my
applying a force over that distance, I have effectively stored energy in it.

How much? 1 have effectively stored 7 = mgh in the apple.

 Why? Because, if I relcase it from rest at that height z = k, it will not
" “vemain at rest. Instead, it will return to the ground under the influence of the
carth’s gravity—a constant downward force of magnitude myg will act over a
displacerment k.
S0, one can think of “grevitational potential-energy” Ujraw = gz as

“the work the force of gravity would apply over the displucement 27

In effect, the potential energy stored-up in it due to its position (height)
would be converted into the energy of motion—into kinetic energy. If no energy
is lost in this conversion, one says that the total energy is conserved.

The Harmonic Oscillator—Motion Under a Linear Force

Let’s now consider the following situation: a mass m hanging from a spring
{with spring constant k).

VWhereas the force due fo the carth’s gravity is constant (near the carth’s
surface), the force due to a spring is not consfani. A mass at rest, hanging from
a spring, is at its equilibrinm position, x.;, which is often set to be zers, In
this situation, the force of gravity and the force of the spring balance to yield a
zero net-fores on the mass. Thus, by Newton’s Laws, the mass is unaccelerated,
and, if started at rest, it remains at rest.

However, if we displace the mass away from its equilibrium position, so as
to stretch or compress the spring, we find that the spring applics a force with
direction opposite to the displacement. with magnitude linear in (i.c.,
“proportional to”) the displacement from equilibrium, #. This is known
as Hooke's Law. In symbals,

Frpring = —k,



where % is the proportionality constant, called the spring-constant, which
depends on the material composing the spring. The minus sign tells us that the
force is directed opposite {o the displacement.

So, using Hooke's force-law in Newton's Law of Motion:

[=kz] = ma

However, recall that the accelerafion a = ﬁ%u = % (%m]. [Recall that this
means that ¢ is the slope-function of the graph of v-vs.-t, where v is the slope-
function of the graph of z-vs-f.] Notice that the acceleration is not a
constant—it is proportional to the displacement:

k

o=——=

m

In fact, it is opposite to the displacement £, with proportionality constant ;ﬁ-
While this relation is true, as written, it is not very useful for us if we wish to

find the position from equilibrium = as a function of time £. The way to proceed
is to express the acceleration-function, a, in terms of the second-derivative of

the position-function, £:
b — d {d
=mz | wz].

It becomes a mathematical problem to discover its solution (i.e., the form of
the position-fonetion z{¢) which will satisfy the equation}. We could, but won’t,
proceed along these lines,

" Instead, we will determine the solution experimentally.

s What is the form of the pesition-function z{1)?
« What is the velocity-function v{f)?

« What is the acceleration-function aff)?
Is it proportional to the position-function z{t)?

The Kinetie-Energy and Potential-Energy for the Harmonic Oscilla-

tor

Assume that the mass is given symbolically as m and that the spring-
constant is given symbolically as k.

Since you now know the velocity-function 4(t}, you can easily find the kinetic-
energy function for the harmonic oscillator:

— L.
Hipring = gt

o What is the kinetic-energy of a harmonic oscillator?



Finding the potential-energy of the harmonic oscillator is a little harder.
Recall the interesting relation:

?— imug?

F(e =) = imy

We derived it under the assumption of motion under consfant acceleration (and,
therefore, a constant force), which is not the case for the harmonic oscillator.

However, this relation is almoest correct for the harmonic oscillater.

With F a constant, observe that quantity on the left, F - (x — #g) is the arsa
of a rectangle with height F and base (z —zg) on a graph of foree F vs. position
2.

More generally, the quantity on the left is the area between the force-
function F and the z-axis.

« Suppose you start from the equilibrium position (2¢ = 0) and then
stretch the spring to a displacement . The force you have to apply
is Fyox = k2 (since you have to oppose the force due to the spring
F = —kx). What is the area between this line and the z-axis?

This area represents the amount of potential energy Usprin, that you store
in the spring by stretching it.
.-* ° You can consider “the area-function” as a function of #, which measures “the
area between the force-function F and the z-axis with base z”. You essentially
did this in the last question!

Now, for something interesting. ..
o Consider a graph of the arca-function vs 2. Find the slope-function

of this curve. Notice anything special?

A Glimpsze of Integral Caleulus

There’s not much time to go into it here... but allow me to tell you something
interesting,.

Let f be a function of the runming-variable #. Recall that the derivative of
that function f with respect to # can be interpreted as the slope-function
of f on an f-vs.z graph.

Here, we learn that if we consider “the area-under-f"-function on an “area-
function®-vs.-z graph. The “area-funciion™s slope-fimetion (not the slope-
function of f itself, but the slope-function of the “arca-under-f"-function) is
again f!

It turns out that the “arca-under-f"-function is related to the infegral of
f with respect te . The integral is another aspect of calculus, called duht
integral caleulus. “Integral” refers to “addition” or “summation”. In some
sense, the “derivative” and the “integral® are inverse operations.

The derivative of “the integral of f* is f:

d
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As an example, let f = bz,
You essential already found that

area-funetion of f = f fde= f [kz] dz = %krz

The derivative of this is

d d |1 1

Another example, let f = € (a constant, like myg).

area-function of f = f fda= f [C] de = C'z.

The derivative of this is

The derivative of this is

( fdx ) G:.'] =C=F
In fact, a general rule for functions of the form f = z™:
area-function of f = f fde= f [#"] dz = EESWEEY
n41
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In fact, it almost works in the opposite order:

The integral of “the derivative of f* is F (plus a possibly-zero constant C):

JZ) w-rie

Let’s just check this for f = 2™

[() e () = 1 &

= ﬂ-f [z*7Y] dz=n [ “T+1 (.1.'(“_1:""'1 + G')] =n E(m“ + G}] =z"+0 = f+C

¢ Bonus: What is [ sinz dz and [ cos o dx?



