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Abstract 
Fastenal spans North America with over 2,600 locations, making them the largest            
fastener distributor in the country. However, such expansiveness caused inventory          
distribution imbalances within the company. This project works towards optimizing          
Fastenal’s existing inventory using R, Excel, and mySQL. Through the combined use of             
linear regression, time series, and our own advanced time series model, we are able to               
forecast future sales using past product sale history. After forecasting future sales we will              
evaluate at which retail locations products will sell best and relocate the products to those               
stores. This projects focuses on redistribution in Fastenal’s smallest warehouse which has            
9 retail locations.  

Introduction 
Fastenal is a wholesale distributor, retailer, and manufacturer of industrial tools and 

components. Their business model is structured around regional distribution centers called 

“hubs.” These hubs distribute products to either wholesale customers or to their retail locations 

called “branches.” 

Currently, some branches have a surplus of items while others do not have enough. Our 

goal in this project is to redistribute Fastenal’s existing inventory to solve this problem. We will 

use given data to forecast future sales for different branches to determine the best location for 

products. 

Our Approach 
We approached this problem by first exploring our data. Due to computational 

limitations, we were only able to analyze a subset of the data, the data set we received contained 

14 hubs and over 2,600 branches, so we narrowed our scope to Fastenal’s smallest hub: A hub of 

9 branches. 

After subsetting the data, we cleaned and reorganized the sales history table. This 

prepared the data to be ran through forecasting models. 

We used a combination of Linear Regression, Time Series, and our own Advanced Time 

 



 

Series Model. We ran the data through each of these models experimentally, whilst filtering out 

good and bad patterned predictions along the way. 

After gathering predictions, we began to tackle the redistribution question. We use the 

forecasted sale intervals to determine which branches will sell a product well and which branches 

will not. Our goal is to transfer products to the branches where they will do best. 

Given Data [1] 

We were given the following tables by Fastenal: 

● Products - Product information for Fastenal products 

● Stocking and Inventory - Snapshot of stocked products for all branches 

● Hub Hierarchy Table - data on past hub->branch stocking decisions 

● 4 Years Consumption Table - 4 years of sales data for Fastenal products  

 

These tables were given as ‘.csv’ files containing several million lines of data each. (e.g. 

the size of the Consumption Table was over 146 million lines). Due to amateur processing 

power, we needed to reduce the data. 

Data Reduction 
We had to reduce the data for two main reasons. The first being hardware restrictions, the 

second being data encryption. We do not have access to the location data for any of the branches 

or hubs. Hubs could be within a district of each other or across the country. When redistributing 

items, shipping costs must be taken into consideration, so we cannot suggest shipping items 

between hubs without knowing their locations. However, because hubs stock their branches, we 

know that branches within a single hub are near each other. This is why we subset the data to a 

single hub. 

Deciding which hub to look at was done using the Hub Hierarchy Table. We found a hub 

containing only 9 branches. This hub will be referred to as the Smallest Hub, because Fastenal’s 

hubs average at 171 branches per hub. We used a single hub as model,  and provided the right 

amount of hardware, we can expand our findings and models to encompass any of Fastenal’s 

 



 

hubs. 

By focusing on only the Smallest Hub, we reduced our data set from millions of lines to a 

little over 100,000. We also further reduce the data utilizing linear regression, this will be 

explained in more depth when we talk about Linear Regression. 

 

Reorganization 
After reducing the data, we were able to reorganize the Consumption Table. We had to 

reformat the data because the Consumption Table was structured to have each year on a separate 

line. While 12 month lines are usable for Linear Regression analysis, we could not use this 

format for Time Series or Advanced Time Series. This is because those models require the data 

to be in a consecutive line. 

The first thing we did to reorganize the data is fill the missing usage month. Every year 

we were given only had 11 Usage Months. However, we were able to use the sales amount given 

to us in the Usage Year field to calculate the 12th month. We simply summed the 11 given 

months and found the difference between that sum and the Usage Year value to be how much 

Fastenal sold in the 12th month. After we had all 12 months, we converted the table from 12 

month lines to 48 month lines by reorganizing the rows. Finally, we converted this data frame 

into a time series. Below is an image of a snippet of the restructured data table before time series 

conversion. 

 

 In addition to making the data usable, reorganizing the data helped us figure out which 

rows had a lot of zero entries. A year or more of zero entries indicate that an item was not being 

 



 

carried by Fastenal at that time. This could be because the item is a recently added item or 

because it was discontinued. It is important to know which items excess zeros because Linear 

regression and Time Series can be inaccurate if not given enough data. 

Math Models 
As mentioned in “Our Approach”, we used a combination of math models to predict 

future sales. Below is a flowchart of how we used each model complementary to each other.

 

Linear Regression 
Linear Regression is a mathematical 

model that allows us to fit a straight line to a 

dataset, following this line allows us to make 

predictions about the future. This line is found 

using an algorithm that minimizes the error 

between the line and the various data points 

within the dataset. Once this line is found, we 

 



 

can look at its attributes, the slope and the intercept, to draw conclusions about the data. The 

intercept: point a in the figure is the starting point for the line, it allows us to shift the line up and 

down. The slope: b in the figure. is a measure of how much the model changes with a 1 unit 

increase in x. There are certain limitations to using this model, and theses limitations affect the 

model’s accuracy. We will discuss these limitations and how we plan to correct for them. 

In the context of Fastenal’s problem, we are looking at how sales change with respect to 

time. That is, how much of a specific product do they plan to sell at a given location (branch) at a 

specific time (month). As mentioned before, we were given 48 Months of Fastenal sales data, 

and asked to use this data to build a predictive model. So to specify, the slope (b) is a measure of 

how much more or less of a Fastenal product should be sold in comparison to the previous 

month. For example, if in the month of January, 50 items of a specific product are sold, and the 

slope/rate of the model for this dataset is 5 (items per month), we can assume that 55 items will 

be sold in February, 60 will be sold in March, etc.  

Here, linear regression is only capable of measuring change with respect to time. 

Therefore, linear regression cannot account for things like seasonal changes in product demand, 

along with many other things. So we will need methods of measuring model accuracy to see if it 

is useful. 

The first method we look at for determining accuracy is Coefficient of Determination, or 

R2 for short. This is a measure of the residual error in the model. We can use this as a measure of 

how good the model fits the historic data set. R2 takes on values from [0, 1], with 1 meaning that 

the model is a perfect fit to the dataset. Below is a graphic that illustrates different R2 values. 

 

The second method we use is the Chi-Square test. This is a measure of how good the 

model makes predictions. In this test we subset the data into two parts, a training set and a test 

set. The training set is a section of the data that we build a model from, and the test set is what 

 



 

we use to test how well the model makes a predictions. This is different from R2 in the sense that 

it only considers the last few months when determining model fit, which is arguably the most 

important time to make predictions. Below are graphics illustrating different Chi-Squared values. 

 

 

By using these two tests, we determine whether the model is accurate enough in 

predictions to be useful,  if not, we pass along that section of data to a method called time series. 

This technique is much more accurate in almost all cases. So,  why use linear regression? The 

main reason for using linear regression is that it is a very efficient technique. This algorithm can 

process large amounts of data in a very short period of time, and without stressing computational 

ability, we were able to build around 108,000 predictions in only around 15 minutes. Looking 

specifically at the top 4,000 items we determined that about 25% of these were able to be 

accurately modeled with linear regression. 

It is also important to mention that there is large percentage of items that have 0 sales 

during many months. Using linear regression, we were able to filter out the items with slopes and 

intercepts of 0 to Fastenal for using other methods of distribution decisions. 

Time Series 
As mentioned, Linear Regression is accurate for 25% of the top 4000 items. This leaves 

75% of the data without accurate sales forecasts. Time series can forecast for some of the 

remaining data by incorporating more complexities. Below is a decomposition of a basic, 

additive Time Series. There are four parts to a Basic Time Series model, the observed, trend, 

seasonal, and random remainder. 

 

 



 

 

The observed component is simply the amount of sales on the y-axis and the month of the 

sale on the x-axis. The observed component can be separated out into the seasonal part and the 

general trend of the sales. The seasonal component indicates cyclical patterns found in the basic 

Time Series. The main reason Time Series is more powerful than Linear Regression is because it 

accounts for seasonality in the sales data.The trend is what is left after the seasonal component is 

accounted for. This indicates whether a product’s sales are generally increasing, decreasing, or 

staying the same. The Time Series’ trend is similar to a Linear Regression model. The last part is 

random noise. This section shows the amount of sales that the seasonal and trend component 

cannot account for. We want a low amount of noise so that the model and make accurate 

predictions. 

The accuracy of Time Series can be measured in many ways, but all methods involve 

using training sets to measure error. Training sets are sections of the known data. For example, 

we were given 48 months of sales data, but we only used 45 months for our training set. We run 

the basic Time Series model on just 45 months of data and use the models to forecast the next 3 

months based off of the previous 45 month portion. We measure model performance by 

comparing the predicted values to the actual data we were given, the remaining 3 months: 

months 46 - 48. The smaller the difference between the numbers means a smaller error. We 

 



 

summed these three months’ errors to generate a summed error value. The most accurate Time 

Series have the smallest summed error values. This concept is illustrated in below (please note, 

the graph shows a prediction for 6 months while we used 3 month predictions). 

 
The next figures are examples of a good fitting Time Series from our data for both 

seasonal and exponential models. It is the same product but for different branches. The red line is 

our training set and the blue dots are our predictions. More graphs can be found in Appendix[2].

 

For this project, we used Time Series to predict what Linear Regression was unable to. 

We ran seasonal and exponential Time Series on the top 4000 items by volume. The Basic Time 

Series model indeed performed better than Linear Regression. When running the seasonal Time 

 



 

Series model, 1354 items out of the 4000 (33.85%) had error under 100 items. For the 

exponential Time Series model, 1300 out of the 4000 (32.5%) had error under 100 items. This 

means for 3 months, the model only miscalculated up to 100 sales. This could be from over or 

underestimation. On average, Basic Time Series was accurate for 33% of the top 4000 items. 

Below is a seasonal Time Series that fit the training set well. It has future sales predicted for 3 

months, denoted by the closed blue dots. The open blue dots are the training predictions. 

 

Below is an exponential Time Series that fit the training set well. It also has future sales 

predicted for the next three months, denoted by the closed blue dots.  

 

 



 

These graphs show that basic Time Series can predict future sales as well as future 

periods where items do not sell well. Predictions of stagnant sales are as important as dynamic 

sales because the product can be evaluated to be moved. We will discuss this further in the 

section about Redistribution. 

For the items which could not be accurately modeled by either Linear Regression or 

Basic Time Series moved on to a model we created called Advanced Time Series. Additionally, 

Basic Time Series’ results have very large confidence intervals. When investing, businesses want 

a balance between confidence levels and narrow confidence intervals. Advanced Time Series can 

accomplish this. This model is introduced in Advanced Time Series. 

Advanced Time Series 
Advanced Time Series is a model we created ourselves for this project. It is able forecast 

future sales more accurately than Linear Regression and Basic Time Series. It is more accurate 

because the confidence intervals are smaller than in Basic Time Series. Overall, the model 

performs 2.4% better than Basic Time Series. Most companies use only Basic Time Series, so 

this percentage gives Fastenal a competitive edge. 

We utilize Auto Arima in our Advanced Time Series model. What is an ARIMA model? 

In statistics and econometrics, and other analysis that uses time series, an Autoregressive 

Integrated Moving Average (ARIMA) model is a generalization of the Autoregressive Moving 

Average (ARMA) model. Both of these models are fitted to time series data either to better 

understand the data or to predict future points in the series (forecasting). ARIMA models are 

applied in some cases where data show evidence of non-stationarity, where an initial differencing 

step (corresponding to the "integrated" part of the model) can be applied one or more times to 

eliminate the non-stationarity (Wikipedia). The most important component of Auto Arima is that 

it automatically decides which months to use as a training set. For example, if the data has many 

zeros in the beginning but a lot of sales data at the end of the row, Auto Arima chooses to only 

use the ending months for analysis. 

What the Advanced Time Series model adds to Auto Arima is it collects the error of the 

Time Series’ forecasts then predicts on the errors. Instead of just using auto.arima() to get 

 



 

prediction value. Below is a graph of the error collection. We found that interval from 3 to 4 gets 

minimum error. 4 can get second minimum error. Therefore, we guess there might be a minimum 

point between 3 and 4. 

 

 

The Advanced Model[3] does the following: 

1. Collects errors for each month (30 - 48): P(mean)-Usages 

2. Do prediction on errors: Predict error for 49 month -> E(max), E(min). 

3. Get new confidence interval: P(mean) + E(max); P(mean) + P(min) 

4. Normal Model: P(mean) = arima() 

Through this process, the Advanced Model is better than Normal Model. 

Accuracy: Predict months 30-48 (with same 62 items as normal model) 

● Real value is in prediction interval 948 times  (80.5%) 

● Real value is in not prediction interval 230 times  

● 80.5% (Advanced Model) > 78.1% (Normal model) 

Most importantly, the prediction interval is smaller most of the time. 

● Prediction Interval Size: 

○ Advanced Model < Normal Model (711 times) 

○ Normal Model < Advanced Model (529 times) 

 



 

Below is a flowchart which illustrates the process of Advanced Time Series. 

 

Redistribution Concept 
We will use the previously mentioned 3 models, Linear Regression, Basic Time Series, 

and Advanced Time Series to determine if an item should be relocated. Once we know the future 

sales for a single item across different branches, we can see where the item sells best and worst.

There are two main situations where redistribution of products is necessary. First, we 

predict the product will be sitting on the shelf without selling. Second, we predict that a branch 

will run out of stock for a product. We want to transfer products from branches predicted not to 

sell said product, to branches where the product has high predicted sales.  

 



 

Below is a graph of the time series for all of the Smallest Hub branches that carry a 

certain item overlaid onto one image. The prediction size is a year using the seasonal Basic Time 

Series model. The top figure is the entire time series while the bottom figure zooms in on the 

prediction. It is obvious that some branches perform better than others when selling products. We 

can transfer the products from the lower selling branches to the higher selling branche

 

 



 

As mentioned, we will be transferring products between branches of the same hub. This 

is because those branches will be stocked by the same distribution center so the redistribution of 

products can fall into order with the natural pattern of product shipments. Also, we do not know 

the distance between branches of different hubs. Transferring internally within a hub guarantees 

that the redistribution cost of the items will be minimal. 

This will drastically improve Fastenal’s inventory turnover ratio. Products will not sit on 

the shelf and be a sunk cost. Additionally, Fastenal’s overhead will decrease as less products will 

have to be purchased or manufactured because existing inventory can be transferred to areas of 

demand. Most importantly, Fastenal’s customers will be served quicker as the products they 

want are already in the branches closest to them. 

Conclusions 
Based on the techniques we have discussed, we can use these models to sort Fastenal’s 

data and predict sales. First, we run our data through Linear Regression, to check to see if the 

model is a good fit. From there, we will either accept it as a reasonable fit or pass it along to 

Time Series. Once the Time Series has been ran, we again will check fit and either accept the fit 

or pass it to Advanced Time Series. With this information, we can begin designing an optimum 

inventory plan for Fastenal. Once we have this optimized inventory plan, we can begin to look at 

how Fastenal’s current inventory is being distributed.  

This is the second half to the problem, that is, looking at how we can redistribute 

Fastenal’s inventory so that products will be more likely to sell. However, certain things need to 

be considered to see if it is economically feasible. For example, branches that are very far away 

from one another will mean the cost to ship that particular product will be substantially higher. 

The next step in this project is to build a model that analyzes the costs and benefits. 

Future Work 
While the project is concluded for now, there is the potential to improve our results and 

go further. Our data ends December 2016. We can use the gathered data from the past 5 months 

to test our predictions and further refine our forecasting models. Also, further investigation into 

 



 

redistribution is needed. We would focus on at least 5 products to create a comprehensive 

redistribution plan. This will involve looking at both future forecasted sales and past stocking 

history for every branch that carries the product. For this we are limited by the amount of data 

our computers can handle. Unless the data is pre-subsetted by Fastenal, the stocking tables for 4 

years will be massive and unreasonable to analyze with our technology. 

Appendix 
 

[1]  

Given Data Tables: 

General Column Definitions 

blank A column of unique integers for every row 

INV_DATE Date inventory was taken on a given item. All dates 
are 12/1/2016 

BRANCH_CODE Unique identifier for a single Branch. Multiple 
branches in this file 

INV_ITEM_ID Unique identifier for every inventory item sold by 
Fastenal 

QTY_BASE Current quantity on hand of an item 

STD_COST_USD Adjusted cost of an item for the company to buy in 
USD 

STD_VALUE_USD What Fasten sells an item for at retail in USD 

CATEGORY_ID Unique identifier for a group of categories assigned 
to products 

WHSL_PRICE Extended sale price of an item 

COGS_COST_USD “Cost of Goods” cost in USD for Fastenal 

COGS_VALUE_USD “Cost of Goods” cost in USD at retail 

COST_FLAG  Unknown 

 

 



 

 4 Years Consumption Table Structure 

* Every month is recorded under USAGE_MONTH except for October, in which 

USAGE  for the entire year is calculated 

blank A column of unique integers for every row 

INVOICE_DT Date inventory was taken on a given item. Dates recorded on are 
10/1/2013, 10/1/2014, 10/1/2015, 10/1/2016 

BRANCH_CODE Unique identifier for a single Branch. Multiple branches in this file 

INV_ITEM_ID Unique identifier for every inventory item sold by Fastenal 

USAGE1 Quantity sold of the item in 2013 

USAGE2 Quantity sold of the item in 2014 

USAGE3 Quantity sold of the item in 2015 

USAGE4 Quantity sold of the item in 2016 

USAGE_MONTH_1 Quantity sold of the item for the month of January 

USAGE_MONTH_2 Quantity sold of the item for the month of February  

USAGE_MONTH_3 Quantity sold of the item for the month of March 

USAGE_MONTH_4 Quantity sold of the item for the month of April 

USAGE_MONTH_5 Quantity sold of the item for the month of May 

USAGE_MONTH_6 Quantity sold of the item for the month of June 

USAGE_MONTH_7 Quantity sold of the item for the month of July 

USAGE_MONTH_8 Quantity sold of the item for the month of August 

USAGE_MONTH_9 Quantity sold of the item for the month of September 

USAGE_MONTH_11 Quantity sold of the item for the month of November 

USAGE_MONTH_12 Quantity sold of the item for the month of December 

 
 

 
 

 

 



 

 Smallest Hub Data: 
 

Branch Code 4 Year Total Consumption 

qp<<~ 247,684 

qpqc~ 18,283,604 

qpqcr 21,601,625 

qpqxc 22,891,776 

qpvdr 12,361,896 

qpvdt 25,223,266 

qpvdw 19,943,934 

qpwld 12,878,353 

qpzdt 20,780,009 

Total: 154,212,147 

Avg. Consumption 
Per Branch: 

17,134,683 

 

[2]  

Time Series Graphs: 

Stagnant Sale  Forecasts: 

 



 

 

Seasonal Sales Forecast: 

 

Increased Sales Forecast: 

 



 

 

Decrease Sales Forecast: 

 

Advanced Time Series Graphs: 

These graphs are for the product discussed in the “Redistribution” time series graphic. 

 

 

 



 

 

 

 

 



 

[3] 
Source code for Advanced Time Series 
library(fpp) 

x <- c(49) 
tep <- 0 
pridictRange <- 0 
errorRange <- 0 
pCount <- 0 
eCount <- 0 
total <- 0 
errout <- 48 
for(div in 1:9){ 
  div <- div * 0.1 

 for (num in 1:69){ 
   e <- c() 

   for(err in 25:48){ 
     low <- c(num) 

     upp <- c(num)  

     fit <- auto.arima(small[20:err, num])  

     my.array <- forecast(fit)  

     e <- append(e, as.numeric(my.array$mean[1]) -  
                    as.numeric(small[err + 1, num])) 
   } 

   fiterr  <- auto.arima(e) 

   err.array <- forecast(fiterr) 
   min <- as.numeric(my.array$mean[1]) - as.numeric(err.array$upper[1]) 
   if(pridictRange > errorRange){ 
     max <- as.numeric(my.array$mean[1]) - as.numeric(err.array$lower[1])  
     point <- min + (max - min) * div 

     e <-c() 

 

      total<- total + as.numeric(small[48, num]) 
    } 

    print("total") 
    print(total) 
    print(div) 
} 

References 
2.5 Evaluating forecast accuracy. (n.d.). Retrieved May 11, 2017, from 
https://www.otexts.org/fpp/2/5 
8.1 Stationarity and differencing. (n.d.). Retrieved May 11, 2017, from 
https://www.otexts.org/fpp/8/1 
Autoregressive integrated moving average. (2017, April 29). Retrieved May 11, 2017, from 
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average 

 

https://www.otexts.org/fpp/8/1
https://www.otexts.org/fpp/2/5
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

