Millisecond Pulsars: Decoding Magnetospheres

by

Shauna Michele Sallmen

B.Sc. (University of Toronto, Canada) 1990 M.A. (University of California at Berkeley) 1992

A dissertation submitted in partial satisfaction of the requirements for the degree of

> Doctor of Philosophy in Astronomy

in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Donald C. Backer, Chair Professor Jonathan A. Arons Professor Robert Lin

Spring 1998

Millisecond Pulsars: Decoding Magnetospheres

Copyright © Spring 1998

by Shauna Michele Sallmen

[REPLACE THIS PAGE WITH A COPY OF] [YOUR SIGNED APPROVAL PAGE]

Abstract

Millisecond Pulsars: Decoding Magnetospheres

by

Shauna Michele Sallmen

Doctor of Philosophy in Astronomy University of California at Berkeley

Professor Donald C. Backer, Chair

A hollow-cone model explains the pulse profile morphology and polarization properties of long-period (1 second) pulsars. The radio emission originates in the open-field line region above the polar cap, which is larger in millisecond pulsars. The emission in these rapidly rotating objects may occur at altitudes which rotate at a speed closer to that of light. Relativistic effects and magnetic field distortions may therefore be more important. Pulse profile studies of millisecond pulsars indicate that the long-period pulsar classification system fails to account for the properties of these objects.

Multi-frequency polarization observations with high temporal resolution are presented for several millisecond pulsars. Secure classification of the pulse profile morphology remains elusive for many objects. Pulse components are narrower than expected, and the spectral behaviour makes core and cone component identification uncertain. The fractional polarization of these objects remains relatively constant with frequency, in contrast to the behaviour of slow pulsars. The polarization position angle curves are similar at all frequencies, suggesting that they are geometric in origin. Their small slopes can be reconciled with the results for long-period pulsars by a simple period-scaling of the pulsar magnetosphere. Long-term variations in the intensity and polarization profiles are observed; polarization variations are seen more frequently in millisecond pulsars than in slow pulsars.

Single pulses studies of normal pulsars revealed the phenomenon of microstructure - radio emission on very short time scales. This modulation may be due to either an angular or a temporal effect. In the former case, it would be expected to scale with pulse period. Giant pulses in the Crab pulsar dominate the emission at some radio frequencies. Simultaneous dual-frequency observations of these pulses reveal that the emission mechanism must be broadband. Both temporal and angular models can account for the modulation. Giant pulses are also seen in PSR B1937+21. These are unexpectedly delayed relative to the average pulse peaks, and are difficult to explain in an angular model. Single-pulse observations of PSR B1534+12 also reveal no evidence for microstructure which scales with pulse period, although an angular beaming origin for the intensity modulation cannot be ruled out. This dissertation is dedicated to

John Sallmen Gertrude Sallmen Lawrence Bostwick Irene Bostwick

Acknowledgements

'Cause you know that -People like you help people like me go on, go on People like you help people like me go on, go on People like you help people like me go on, go on "People Like You" by Bob Bossin

There are many people to thank, and it is hard to know where to begin. Except that this thesis could not have been completed without the cooperation, encouragement, and candy-making of my husband Steve, who takes me as I am.

Who I am today results from my family and my past. So I would like to thank my parents for encouraging me to always do my best, and Mrs. Buchwitz, for her patience with capricious five-year-olds. My brother Mark showed me that a thesis can take a long time, but still be done! All my aunts, uncles, and cousins bring warm memories to mind, while the courage of my grandparents gives me strength. Meanwhile Sarah keeps me tied to my roots, and encourages freedom in life.

There are many in my "other life", the one outside astronomy, that deserve mention. I would like to thank Cavan for being the best housemate imaginable, and for willingly feeding Steve and I at a moment's notice. And my Trinity family, for being themselves: Odette, for her gracious calm whenever I needed it, despite her chaotic life; Chuckie, for wonderful massages; Amelia, for entertaining my lonely husband while I was away, and for being generous with her horse; Dolly, for being silly on the trail; and Deborah, for losing her coffee virginity with us. Betsy and Voices for Change kept me sane when I most needed it, and reminded me how to live a life. Thanks to Aimee, for dancing with my husband, but having lunch with me, and Emilie, for being an excellent observing partner in the cold dome in Toronto. Margaret's joy and silliness have been a source of great pleasure, and her advice and support have been greatly appreciated. The members of the Society of the Great Round One know what they have done. Bonnie helped me get through this. And I cannot stop without thanking: Stinky, for being a staunch mascot of the GBPP; Woofie, for his watchful eye on my computer; Robin, for her company on many observing trips; Bruce Moose, for being so squishable; Roberta, for her comforting sounds, Tess, for keeping the others under control, and all the rest of the menagerie, for their cheerful attitudes.

Within the astronomy department, there are many people not directly involved with my research who should be thanked. Jay was a wonderful office mate, and lunches with Charles were always interesting. I appreciated Eric's company during thesis ups and downs, and am grateful to Rosa for proving a thesis *could* be finished when I needed to see that. Paquito's company in I-House was welcome.

The staff in the astronomy department here at UC Berkeley have been incredibly helpful, especially Joyce Wong & Robi Carmack for help with travel, Graduate Assistants Mary Brunn, Beverly Skinner, and Kim Patton (and recently Juliane Monroe) for always knowing who I needed to see, and Patrice for help with the ever-important payroll.

My advisor Don Backer is responsible for getting me hooked on pulsars. The original motivation of studying a gravitational wave background via pulsar timing gave way to an insatiable curiousity about the objects themselves, which he cheerfully encouraged. His knowledge, guidance, and support have made this research interesting, challenging, and enjoyable. Berkeley pulsar post-docs Alex Zepka and Andy Fruchter, and fellow pulsar students Tony and Andrea kept me in touch with aspects of pulsar research other than those contained in this dissertation. Jon Arons clarified complicated magnetospheric theories, allowing this observer to have a clue.

Matt Dexter and his expertise with BPPs made the bulk of the observations in this thesis possible. I especially appreciated his long hours of long-distance assistance during my observations at the Effelsberg 100-m telescope in Germany. The entire pulsar group at Bonn made me feel welcome, but without Axel Jessner the EBPP would not have been usable. Michael Kramer was a wonderful host during that observing trip, and his enthusiasm for millisecond pulsars is infectious. Although I have not met her, e-mail discussions with Kiriaki Xilouris about millisecond pulsar polarization were invaluable.

Alex Wolszczan's technical assistance at Arecibo made the observations for Chapter 6 possible.

The staff at the Green Bank observatory have been very friendly and helpful. My many trips to Wild, Wonderful West Virginia were always enjoyable. Becky Warner, in concert with the Charlottesville, VA NRAO staff, made sure I always got there and had a place to stay. The cafeteria and housekeeping staff saved me spinach salad on request, and let me back into my room after I locked myself out. My thanks to the drivers who occasionally transported me back to Charlottesville on the return journey, for diverting conversation. The 85-3 operators have always been helpful and responsive, helping to track ethernet cables across the ceiling, as well as monitoring the telescope and GBPP when we were absent. George Liptak made sure the GBPP moved from the 85-3 and back again on cue, and the movers were careful when driving over the potholes, so the system remained operational. Bill Shank responded to requests for filters, feed changes, power meters, amplifiers, and correlated calibration signals with good humour, and kept the radio signals coming. Ed Childers kept the GBPP PC connected to the ethernet, and Preston provided extra cables on request. The 140-foot operators kept an eye on it all, and let me catch a little sleep on occasion. Jay Lockman snagged me for the weekly science talk more than once, but always signed my travel forms and made sure I had all the help I needed. Mark Clark and Rick Fisher kept the spectral processor going during the timing runs, allowing me to concentrate on the GBPP. Pulsar discussions with Mark McKinnon were always enlightening, and he also taught me the basics of polarization calibration. The Minters and Langstons welcomed me to their homes for dinner more than once.

My thanks go to Tim Hankins, Dave Moffett, and Scott Lundgren, for making the simultaneous giant pulse observations of Chapter 5 possible, and for stimulating discussions on the outcome. I am also grateful to the observatory staff at Green Bank and at the VLA for minimizing internet traffic during the two hours of that experiment.

Many members of the pulsar community, encountered at conferences large and small, have been welcoming and helpful. These are too numerous to mention, but Green Bank encounters with David Nice, Scott Lundgren, and Zaven Arzoumanian taught me a great deal about pulsars and observing. Dan Stinebring was especially helpful in clarifying my understanding of polarization calibration using pulsars, during one summer session there.

Finally, I must again thank my beloved Moose, for his patience, support, and calm in my storms.

It's teamwork I couldn't make it on my own It takes teamwork... "Teamwork" by Tamarack

Contents

\mathbf{A}	bstra	act	\mathbf{v}
A	ckno	wledgements	ix
Τa	able	of Contents x	iii
List of Tables			vii
Li	st of	f Figures x	ix
1	Int	roduction	1
	1.1	Historical Background and Overview	1
	1.2	Single Pulses	4
	1.3	Properties of Average Profiles: Emission Region	6
	1.4	Polarization Properties: Pulsar Geometry	13
	1.5	Basic model	19
	1.6	Pulsar Magnetospheres	21
	1.7	Pulsar Emission	23
	1.8	Propagation Effects	25
		1.8.1 Dispersion delay in cold plasma	25
		1.8.2 Faraday rotation	26
		1.8.3 Scattering	27
	1.9	Millisecond Pulsars	29

Ι	Po	larim	etry	33			
2	Observing Particulars						
	2.1	Telesc	opes and Receivers	35			
		2.1.1	Green Bank 140′	35			
		2.1.2	Green Bank 85-3	36			
		2.1.3	Effelsberg 100m	36			
	2.2	Berkel	ley Pulsar Processors	37			
		2.2.1	GBPP	37			
		2.2.2	EBPP	39			
	2.3	Obser	ving information	40			
	2.4	Gain (Calibration	42			
		2.4.1	Practicalities	43			
	2.5	Polariz	zation Calibration	45			
		2.5.1	Theory	45			
			2.5.1.1 Circular Basis	46			
		2.5.2	Calibration Procedure	48			
		2.5.3	Application to Circular Polarization data	50			
			2.5.3.1 1410-MHz EBPP data	51			
			2.5.3.2 575-MHz GBPP data	54			
			2.5.3.3 820-MHz GBPP data	55			
		2.5.4	The effects of $\sigma \neq 0$ on PPA	58			
		2.5.5	Application to Linear Polarization data	59			
			2.5.5.1 Application to 140' 800-MHz Data	59			
			2.5.5.2 Application to 85-3 data	60			
	2.6	Data 1	Reduction	62			
3	Pola	rizatio	on Observations of Millisecond Pulsars	65			
	3.1	Data 1	Presentation	65			
	3.2	PSR J	10613 - 0200	68			
	3.3	PSR J	1012 + 5307	72			
	3.4	PSR J	1022 + 1001	76			
	3.5	PSR E	31620-26	80			
	3.6	PSR J	1713 + 0747	84			
	3.7	PSR J	1730-2304	88			
	3.8	PSR E	31821–24	92			
	3.9	PSR I	31937+21	98			
	3.10	PSR J	52145 - 0750	102			

	3.11	1410-MHz Polarization Profiles
		3.11.1 PSR J0751+1807
		3.11.2 PSR 1518+4904
		3.11.3 PSR 1640+2224
		3.11.4 PSR 1643-1224
	3.12	PSR B0531+21 at 610 MHz 110
4	Pola	arization Analysis of Millisecond Pulsars 113
	4.1	Pulsar Geometry 113
	4.2	PPA Fits
		4.2.1 PSR J0613-0200
		4.2.2 PSR J1012+5309
		4.2.3 PSR J1022+1001
		4.2.4 PSR B1620–26
		4.2.5 PSR J1713+0747
		4.2.6 PSR J1730-2304
		4.2.7 PSR B1821–24
		4.2.8 PSR B1937+21
		4.2.9 PSR J2145 -0750
	4.3	Shallow PPA Slopes
	4.4	Characteristics of Pulse Profiles 144
	4.5	Frequency Dependence of Polarization
	4.6	Moding Behaviour
	4.7	Polarization Summary 150

Π	\mathbf{S}	\mathbf{ingle}	Pulses	151
5	Dua	al Freq	quency Crab Giant Pulses	153
	5.1	Summ	nary	 153
	5.2	Introd	luction	 155
	5.3	Obser	vations	 157
	5.4	Analy	$r_{ m sis}$	 159
		5.4.1	Wide Bandwidth Correlation	 159
		5.4.2	Profile Shape	 163
		5.4.3	Energies and Spectral Indices	 166
		5.4.4	Models of the Emission Beam	 168
		5.4.5	The Emission Mechanism	 169
	5.5	Concl	usion	 171
6	Ind	ividual	l Pulses in Millisecond Pulsars	173
	6.1	Summ	nary	 173
	6.2	Introd	luction	 174
	6.3	Obser	vations & Data Reduction	 175
	6.4	Analy	sis of PSR B1534+12	 176
	6.5	Analy	vsis of PSR B1937+21	 178
		6.5.1	Giant Pulses	 182
		6.5.2	Temporal variations	 185
	6.6	Discus	ssion of Giant Pulses	 188
		6.6.1	Comparison to the Crab Giant Pulses	 188
		6.6.2	Models of the Emission Beam	 188
		6.6.3	Further Studies	 191
	6.7	Concl	usions	 192
7	Con	clusio	ns	193
Re	efere	nces		197

List of Tables

2.1	Observing Information for Millisecond Pulsars	41
2.2	Gain Calibration Sources	44
2.3	Polarization Calibration Summary	61
3.1	Gaussian Component Decomposition of Intensity Profiles	64
3.2	Polarization Profile Summary	66
3.3	Polarization of Millisecond Pulsars	67
4.1	Pulsar Geometries and Moding Behaviour	116

List of Figures

1.1	$P-\dot{P}$ diagram	2
1.2	Single pulses from PSR B1133+16	4
1.3	Average profiles of PSR B1133+16	6
1.4	Lighthouse model of Pulsar Emission	8
1.5	Hollow Cone Model	8
1.6	Polarization Profile of pulsar B0355+54	14
1.7	Geometry of the emission region	15
1.8	Rotating Vector Model	16
1.9	Effects of Dispersion on Pulse arrival	26
2.1	Block diagram of BPP	38
2.2	Stokes vs. β for PSR B1929+10 at 1410 MHz \ldots \ldots	52
2.3	Instrumental Polarization Parameters for Effelsberg	53
2.4	Corrected Stokes vs. β for PSR B1929+10	54
2.5	V/P vs. Feed Angle β for PSR B1929+10 at 575 MHz \ldots	55
2.6	V/P vs. β at 820 MHz for 1997 April	56
2.7	Stokes vs. β for PSR B1929+10 at 820 MHz for 1997 July	57
2.8	Effect of $\sigma \neq 0$ on PPA	58
2.9	The effects of θ_{yy} on PSR B1929+10	60
3.1	Component Decomposition for PSR J0613-0200	69
3.2	Polarization Profiles of PSR J0613–0200	70
3.3	Expanded 575-MHz Polarization Profile of PSR J0613 -0200	71
3.4	Component Decomposition for PSR J1012+5307	73
3.5	Polarization Profiles of PSR J1012+5307	74
3.6	Expanded 1410-MHz Polarization Profile of PSR J1012+5307 \ldots	75
3.7	Component Decomposition for PSR J1022+1001	77
3.8	Polarization Profiles of PSR J1022+1001	78
3.9	Expanded 575-MHz Polarization Profile of PSR J1022+1001	79
3.10	Component Decomposition for PSR B1620-26	81

3.11	Polarization Profiles of PSR B1620–26	82
3.12	Expanded 1410-MHz Polarization Profile of PSR B1620 -26	83
3.13	Component Decomposition for PSR J1713+0747	85
3.14	Polarization Profiles of PSR J1713+0747	86
3.15	Expanded 1410-MHz Polarization Profile of PSR J1713+0747 \ldots	87
3.16	Polarization Profile of PSR J1713+0747 at 800 MHz	88
3.17	Component Decomposition for PSR J1730-2304	89
3.18	Polarization Profiles of PSR J1730–2304	90
3.19	Expanded 1410-MHz Polarization Profile of PSR J1730 -2304	91
3.20	Component Decomposition for PSR B1821–24	93
3.21	Polarization Profiles of PSR B1821–24	94
3.22	Expanded 820-MHz Polarization Profile of PSR B1821–24	95
3.23	Polarization Profiles of PSR B1821–24 at 820 MHz	97
3.24	Component Decomposition for PSR B1937+21	99
3.25	Polarization Profiles of PSR B1937+21	100
3.26	Expanded 1410-MHz Polarization Profile of PSR B1937+21	101
3.27	Component Decomposition for PSR J2145-0750	103
3.28	Polarization Profiles of PSR J2145-0750	104
3.29	Expanded 820-MHz Polarization Profile of PSR J2145-0750	105
3.30	Polarization Profile of PSR J2145-0750 at 800 MHz	106
3.31	1410-MHz Polarization Profiles of PSRs J0751+1807, J1518+4904,	
	J1640+2224, and J1643-1224 $\dots \dots \dots$	108
3.32	Expanded Polarization Profiles of PSRs J0751+1807, J1518+4904,	
	J1640+2224, and J1643-1224 $\dots \dots \dots$	109
3.33	610-MHz Polarization Profile of PSR B0531+21	110
3.34	Expanded Polarization Profile of PSR B0531+21	111
41	Log Polon Diagnory of Interneity for DSP 10612 0200	117
4.1	DDA model for DSP 10612 0200	110
4.2	Log Polon Diagram of Interpity for DSP 11012+5207	120
4.5	Log-rolar Diagram of Intensity for $r 5K 51012+5507$	120
4.4	Log Polon Diagnam of Interpity for DSP 11022+1001	121
4.5	Log-rolar Diagram of Intensity for $r SK J1022+1001$	120
4.0	PPA model for FSR J1022+1001	124
4.7	Log Polor Diagram of Intensity for DSR B1620 26	120
4.0 1 0	Dog-1 of a Diagram of Intensity for $1.510 \pm 0.020 \pm 20$	197
4.9 1 10	I A model for 1 Str $D1020-20$	121
4.10	$PPA \mod for PSR 11713 \pm 0747$	120
7.11	$\mathbf{T} \mathbf{T} \mathbf{U} \mathbf{T} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{T} \mathbf{D} \mathbf{U} \mathbf{U} \mathbf{T} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	T00

4.12	Log-Polar Diagram of Intensity for PSR J1730–2304	132
4.13	PPA model for PSR J1730–2304	133
4.14	Log-Polar Diagram of Intensity for PSR B1821–24	134
4.15	PPA model for PSR B1821–24	135
4.16	Log-Polar Diagram of Intensity for PSR B1937+21	137
4.17	PPA data for PSR B1937+21	138
4.18	Log-Polar Diagram of Intensity for PSR J2145–0747	139
4.19	PPA model for PSR J2145-0750	140
4.20	Distribution of PPA slopes	142
4.21	Linear Polarization vs. Frequency	146
. .		100
5.1	Single Crab Giant Pulse at 1.4 GHz	160
5.2	Single Crab Giant Pulse at 0.61 GHz	161
5.3	Correlation in Arrival Times of 1.4-GHz and 0.61-GHz Giant Pulses .	162
5.4	Component Fitting to a 1.4-GHz Giant Pulse	164
5.5	Component Fitting to a 1.4-GHz Giant Pulse	165
5.6	Energy Correlation of Dual Frequency Giant Pulses	167
6.1	Pulse energy distribution for PSR B1534+12	177
6.2	ACF of individual pulses from PSR B1534+12	177
6.3	Probability density distribution of pulse energies	179
6.4	Very strong main pulse and interpulse from PSR B1937+21	181
6.5	Integrated probability distribution for Very strong pulses	182
6.6	Shape of very strong pulses in PSR B1937+21	185
6.7	χ^2 of PDF for a very strong pulse	187