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Abstract

Millisecond Pulsars:

Decoding Magnetospheres
by
Shauna Michele Sallmen

Doctor of Philosophy in Astronomy
University of California at Berkeley

Professor Donald C. Backer, Chair

A hollow-cone model explains the pulse profile morphology and polarization prop-
erties of long-period (1 second) pulsars. The radio emission originates in the open-field
line region above the polar cap, which is larger in millisecond pulsars. The emission in
these rapidly rotating objects may occur at altitudes which rotate at a speed closer to
that of light. Relativistic effects and magnetic field distortions may therefore be more
important. Pulse profile studies of millisecond pulsars indicate that the long-period
pulsar classification system fails to account for the properties of these objects.

Multi-frequency polarization observations with high temporal resolution are pre-
sented for several millisecond pulsars. Secure classification of the pulse profile mor-
phology remains elusive for many objects. Pulse components are narrower than ex-
pected, and the spectral behaviour makes core and cone component identification
uncertain. The fractional polarization of these objects remains relatively constant
with frequency, in contrast to the behaviour of slow pulsars. The polarization posi-
tion angle curves are similar at all frequencies, suggesting that they are geometric in
origin. Their small slopes can be reconciled with the results for long-period pulsars
by a simple period-scaling of the pulsar magnetosphere. Long-term variations in the
intensity and polarization profiles are observed; polarization variations are seen more
frequently in millisecond pulsars than in slow pulsars.

Single pulses studies of normal pulsars revealed the phenomenon of microstructure
- radio emission on very short time scales. This modulation may be due to either an

angular or a temporal effect. In the former case, it would be expected to scale with
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pulse period. Giant pulses in the Crab pulsar dominate the emission at some radio
frequencies. Simultaneous dual-frequency observations of these pulses reveal that the
emission mechanism must be broadband. Both temporal and angular models can
account for the modulation. Giant pulses are also seen in PSR B1937421. These
are unexpectedly delayed relative to the average pulse peaks, and are difficult to
explain in an angular model. Single-pulse observations of PSR B1534+412 also reveal
no evidence for microstructure which scales with pulse period, although an angular
beaming origin for the intensity modulation cannot be ruled out.
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