Instructions: Please write your solutions neatly and using the appropriate notations. Explanations should be written in complete sentences. Encircle your final answers.

1. The following stem-and-leaf plot summarizes the exam scores of a sample of 32 statistics students.

note that $\sum_{i=1}^{32} X_i = 2,578 \text{ and } \sum_{i=1}^{32} X_i^2 = 212,152.$	9
a. Determine the following:	
i. Maximum value	[2 pts.]
ii. Sample mean	[3 pts.]
iii. Standard deviation	[5 pts.] note : Variance = $\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}$
iv. Median.	[2 pts.]
v. The value of first quartile (Q_1) .	[2 pts.]
vi. The value of third quartile (Q_3) .	[2 pts.]
vii. The value of IQR	[2 pts.]
viii. The lower limit (for the boxplot).	[2 pts.]
ix. The upper limit (for the boxplot).	[2 pts.]
 b. Draw a (horizontal) modified boxplot for this data. Please include all relevant values. 	Are there potential outliers? [5 pts.]

c. Construct the frequency table for this data using $40 < 50, 50 < 60, \ldots, 90 < 100$, for the classes (Class 40 < 50 includes 40 but not 50). Then draw a histogram for this table. [6 pts.]

- d. What can you say about the skewness of the distribution? [2 pts.]
- 2. Suppose that in a sample of 500 college students, 350 drink alcohol, 200 smoke, and 150 drink and smoke. If a student is chosen at random from this sample, let D represent the event of selecting someone who drinks alcohol, and let S represent the event of selecting someone who smokes.
 - a. Draw a Venn diagram that includes these 2 events and determine the <u>number</u> of students that fall in each separate regions. [6 pts.]

b.	What is the probability that the randomly selected student i. drinks alcohol but does not smoke?	[4 pts.]
	ii. is engaged in at least one of these two habits?	[4 pts.]
	iii. smokes given that he/she drinks?	[4 pts.]
c.	Are events D and S mutually exclusive (disjoint)? Explain.	[4 pts.]

d. Are events D and S independent? Explain. [4 pts.]

3. From a lot of 12 missiles, 5 are selected at random and fired. If a lot contains 3 defective missiles that will not fire, what is the probability that

a. all 5 will fire?

[6 pts.]

b. at least 2 will not fire?

[8 pts.]

4. A company uses three different assembly lines $-A_1, A_2, A_3-$ to manufacture a particular component. Of those manufactured by A_1 , 5% need rework to remedy a defect, whereas 8% of A_2 's components need rework and 10% of A_3 's need rework. Suppose that 60% of all components are produced by line A_1 , 30% are produced by line A_2 , and 10% come from line A_3 . If a component is randomly selected,

a. construct a tree diagram, showing the different possibilities. [5 pts.]

b. what is the probability that it needs rework?

[5 pts.]

c. what is the probability it came from line A_3 given that it requires rework? [5 pts.]

5. Give two (2) examples of Categorical and Quantitative variables, then list 2 examples of actual data that you might observe from these variables. [6 pts.]

a.	Categorical variables			
	i	(1)	(2)	
	ii	(1)	(2)	
b.	Quantitative variables			
	i	(1)	(2)	
	ii	(1)	(2)	

- 6. Essay: Answer the following questions with at most 3 sentences. [2 pts. each]
 - **a.** Why do we usually have to work with a sample when we are really interested with the population?

b. Why is it important that we work with a *representative* sample?

c. Discuss the main difference between μ and \bar{X} .