Instructions: Please write your solutions neatly and using the appropriate notations. Explanations should be written in complete sentences. Encircle your final answers.

1. The following stem-and-leaf plot summarizes the exam scores of a sample of 32 statistics students.

4	0		
5	8		
6	379		
7	2445788		
8	0013346777899)	
9	0111268		
	0111200		
note that $\sum_{i=1}^{32} X_i = 2,578$ and $\sum_{i=1}^{32} X_i^2 = 212$, 152.		
a. Determine the following:			
i. Maximum value. <u>98</u>			[2 pts.]
			[- [200.]
ii. Sample mean. <u>80.56</u>			[3 pts.]
II. Dample mean. $\underline{00.00}$			[o pts.]
		$\sum x^2$	$(\sum x)^2$
iii. Standard deviation. $\underline{12}$		[5 pts.] note : Variance = $\frac{\sum x^2}{n}$	<u></u> <u>n</u>
		n n	-1
iv. Median. <u>83</u>			[2 pts.]
—			[]
v. The value of first quartile (Q_1) . 7	4.5		[2 pts.]
v. The value of mist quartile (Q_1) .	1.0		[2 pts.]
	20		
vi. The value of third quartile (Q_3) .	<u>89</u>		[2 pts.]
vii. The value of IQR. $\underline{14.5}$			[2 pts.]
viii. The lower limit (for the boxplot).	52.75		[2 pts.]
ix. The upper limit (for the boxplot).	110.75		[2 pts.]
b Draw a (harizantal) madified harmla	for this data	Ano there not ontial outliers?	[5 ptg]
b. Draw a (horizontal) modified boxplot	t for this data.	Are there potential outliers?	[5 pts.]

Please include all relevant values.

c. Construct the frequency table for this data using $40 < 50, 50 < 60, \ldots, 90 < 100$, for the classes (Class 40 < 50 includes 40 but not 50). Then draw a histogram for this table. [6 pts.]

- **d.** What can you say about the skewness of the distribution? *skewed to the left* [2 pts.]
- 2. Suppose that in a sample of 500 college students, 350 drink alcohol, 200 smoke, and 150 drink and smoke. If a student is chosen at random from this sample, let D represent the event of selecting someone who drinks alcohol, and let S represent the event of selecting someone who smokes.
 - a. Draw a Venn diagram that includes these 2 events and determine the <u>number</u> of students that fall in each separate regions. [6 pts.]

- **b.** What is the probability that the randomly selected studenti. drinks alcohol but does not smoke? $\frac{200}{500}$ or $\frac{2}{5}$ ii. is engaged in at least one of these two habits? $\frac{350}{500} + \frac{200}{500} \frac{150}{500} = \frac{400}{500}$ or $\frac{4}{5}$ iii. smokes given that he/she drinks? $\frac{150}{350}$ [4 pts.]
- **c.** Are events *D* and *S* mutually exclusive (disjoint)? Explain. [4 pts.] No, because there are students who drink and smoke. The intersection of the two events is not empty.
- **d.** Are events *D* and *S* independent? Explain. [4 pts.] No. Because $P(D \cap S) = \frac{150}{500} \neq P(D) * P(S) = \frac{350}{500} * \frac{200}{500} = \frac{140}{500}$
- **3.** From a lot of 12 missiles, 5 are selected at random and fired. If a lot contains 3 defective missiles that will not fire, what is the probability that

a. all 5 will fire?
$$\frac{\binom{9}{5}}{\binom{12}{5}} = \frac{126}{792} \approx 0.159$$
 [6 pts.]

b. at least 2 will not fire?
$$\frac{\binom{3}{2}\binom{9}{3} + \binom{3}{3}\binom{9}{2}}{\binom{12}{5}}$$
 [8 pts.]

4. A company uses three different assembly lines $-A_1, A_2, A_3-$ to manufacture a particular component. Of those manufactured by A_1 , 5% need rework to remedy a defect, whereas 8% of A_2 's components need rework and 10% of A_3 's need rework. Suppose that 60% of all components are produced by line A_1 , 30% are produced by line A_2 , and 10% come from line A_3 . If a component is randomly selected,

a. construct a tree diagram, showing the different possibilities. [5 pts.]

- **b.** what is the probability that it needs rework? (.6)(.05)+(.3)(.08)+(.1)(.1)=.064 [5 pts.]
- c. what is the probability it came from line A_3 given that it requires rework? (.1)(.1)/.064 = .15625 [5 pts.]
- 5. Give two (2) examples of Categorical and Quantitative variables, then list 2 examples of actual data that you might observe from these variables. [6 pts.]
 - a. Categorical variables

 \mathbf{b}

i. Blood Type		$(1)\underline{A} (2)\underline{AB}$
ii	(1)	(2)
D. Quantitative variables		
i. <u>Height</u>		(1)68 inches $(2)175$ cm
ii.	(1)	(2)

- **6.** Essay: Answer the following questions with at most 3 sentences. [2 pts. each]
 - a. Why do we usually have to work with a sample when we are really interested with the population?

Because populations are usually too large to study.

- **b.** Why is it important that we work with a representative sample? So we can generalize the conclusion we obtained from the sample to the whole population.
- c. Discuss the main difference between μ and \bar{X} . μ is the mean of the whole population, which is constant at a certain time. \bar{X} is the mean of a sample, whose value changes from sample to sample.