Review - Exam Final

- 1. Chapter 1: Terminologies
 - Two types of Statistical methods Descriptive and Inferential Statistics.
 - Two types of Data Quantitative and Categorical (Qualitative)
 - Sampling Designs
 - a. Simple Random Sampling (SRS)
 - **b.** Systematic Sampling
 - c. Cluster Sampling
 - d. Stratified Sampling (with proportional allocation)
- 2. Chapter 2: Descriptive Statistics
 - Graphical Procedures Histograms, Stem-and-leaf Plot, Boxplot, Dotplot, Frequency/Rel. Freq, Table.
 - Numerical Procedures
 - a. Measures of Center Mean, Median, Mode.
 - b. Measures of Spread Range, Variance, Standard Deviation.
 - **c.** Five-number summary.
 - *z*-score
- 3. Chapter 3: Definitions
 - *Experiment* Any process of observation that leads to a single outcome that cannot be predicted with certainty.
 - Sample Space Set of all possible outcomes of an experiment.
 - *Event* A subset of the sample space.
 - Probability (of an event) The chance of this event occurring.

[Equally Likely Model]: $P(E) = \frac{\text{no. of favorable outcomes}}{\text{no. of possible outcomes}}$

4. Review: Properties

- **a.** $0 \le P(E) \le 1$; P(S) = 1; and $P(\phi) = 0$
- **b.** Probability of the Complement: $P(E^c) = 1 P(E)$
- **c.** Probability of the Union:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

5. If A and B are mutually exclusive(disjoint) events (they don't intersect), then

$$P(A \cup B) = P(A) + P(B).$$

- 6. Counting Techniques: Multiplication Principle, Permutation, and Combination.
- 7. Conditional Probability When P(B) > 0, the conditional probability of A given B is

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(A \cap B)}{P(B)}.$$

8. Independence: Events A and B are said to be independent if and only if

$$P(A \cap B) = P(A)P(B).$$

9. Total Probability:

- 10. Bayes Rule:
- 11. Chapter 4: Discrete Random Variables

Values of X	x_1	x_2	x_3	 x_k
Probability	p_1	p_2	p_3	 p_k

where, every probability p_i is between 0 and 1, and $p_1 + p_2 + \cdots + p_k = 1$

a. Expected Value. $E(X) = \mu = \sum_{i=1}^{k} x_i p_i = x_1 p_1 + x_2 p_1 + x_3 p_3 + \dots + x_k p_k$

b. Variance.
$$Var(X) = \sigma^2 = \sum_{i=1}^{\kappa} (x_i - \mu)^2 p_i = (x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \dots + (x_k - \mu)^2 p_k$$

c. Binomial Distribution. $X \sim bin(n, p)$, That is

$$P(X = x) = {\binom{n}{x}} p^x (1-p)^{n-x}, \quad \text{for } x = 0, 1, \dots, n$$

- 12. Chapter 5: Continuous Random Variables
 - a. Uniform Distribution. $X \sim Unif[c, d]$.
 - b. Normal Distribution. $X \sim N(\mu, \sigma^2)$.
 - c. Normal approximation of the binomial distribution.
- 13. Chapter 6: Sampling distribution of \bar{X} and the Central Limit Theorem.
 - **a.** If $X \sim N(\mu, \sigma^2)$, then $\bar{X} \sim N(\mu, \sigma^2/n)$
 - **b.** CLT. If n is large $(n \ge 30)$, then $\bar{X} \approx N(\mu, \sigma^2/n)$
- 14. Chapter 7: Estimation and Confidence Intervals for one population. (μ, p, σ^2)
- **15.** Chapter 8: Hypothesis Testing for one population. $(\mu, p,)$
- 16. Chapter 9: Hypothesis Testing for two populations.
 - **a.** $\mu_1 \mu_2$
 - **b.** $p_1 p_2$
- 17. Chapter 13: Chi-squared Tests.
 - a. Goodness-of-fit Test
 - b. Testing Equality of Several Proportions
 - c. Homogeneity Test
 - d. Testing of Independence
- 18. Chapter 10: Analysis of Variance (ANOVA).
- 19. Chapter 11: Simple Linear Regression.