Simple Linear Regression

• The response variable Y is linearly related to one explanatory variable X. That is,

$$Y_i = (a + bX_i) + \epsilon_i$$
. $i = 1, 2, \dots, n$.

Assumptions:

- **1.** The mean of ϵ_i is 0 and the variance of ϵ_i is σ^2 .
- **2.** The random errors ϵ_i are uncorrelated.
- **3.** a and b are parameters.
- **4.** X_i is a known constant.
- Equation of the Least-Squares Regression Line. Suppose we have data on an explanatory variable x and a response variable y for n individuals. The means and standard deviations of the sample data are \bar{x} and s_x for x and \bar{y} and s_y for y, and the correlation between x and y is r. The equation of the least-squares regression line of y on x is

$$\hat{y} = \hat{a} + \hat{b}x$$

with slope

$$\hat{b} = \frac{SS_{xy}}{SS_{xx}} = \frac{(\Sigma xy) - \frac{1}{n}(\Sigma x)(\Sigma y)}{(\Sigma x^2) - \frac{1}{n}(\Sigma x)^2} = r\frac{s_y}{s_x}$$

$$\tag{1}$$

and intercept

$$\hat{a} = \bar{y} - \hat{b}\bar{x} \tag{2}$$

- The fitted (or predicted) values \hat{y}_i 's are obtained by successively substituting the x_i 's into the estimated regression line: $\hat{y} = \hat{a} + \hat{b}x_i$. The **residuals** are the vertical deviations, $e_i = y_i - \hat{y}_i$, from the estimated line.
- The error sum of squares, (equivalently, residual sum of squares) denoted by SSE, is

$$SSE = \sum_{i} e_i^2 = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} [y_i - (\hat{a} + \hat{b}x_i)]^2$$
 (3)

$$= \sum y_i^2 - \hat{a} \sum y_i - \hat{b} \sum x_i y_i \tag{4}$$

and the estimate of σ^2 is

$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n-2} = \frac{(n-1)s_y^2(1-r^2)}{n-2}.$$
 (5)

• The coefficient of determination, denoted by r^2 , is the amount of the variation in y that is explained by the regression line.

$$r^{2} = 1 - \frac{SSE}{SST}, \quad \text{where, } SST = SS_{yy} = \sum (y_{i} - \bar{y})$$
 (6)
 $= \frac{SST - SSE}{SST} = \frac{\text{explained variation}}{\text{total variation}}$ (7)

$$= \frac{SST - SSE}{SST} = \frac{\text{explained variation}}{\text{total variation}}$$
 (7)

- Inference for b.
 - 1. Test statistic:

$$\frac{\hat{b}-b}{SE_{\hat{b}}} \sim t(n-2) \qquad \qquad SE_{\hat{b}} = \frac{s}{s_x\sqrt{n-1}} = \frac{\hat{b}\sqrt{1-r^2}}{r\sqrt{n-2}}$$

2. Confidence Interval: $b \pm t_{\alpha/2} SE_{\hat{b}}$

- Mean Response of Y at a specified value x^* , $(\mu_{Y|x^*})$.
 - 1. Point Estimate. For a specific value x*, the estimate of the mean value of Y is given by

$$\hat{\mu}_{Y|x^*} = \hat{a} + \hat{b}x^*$$

2. Confidence Interval. For a specific value x*, the $(1-\alpha)100\%$ confidence interval for $\mu_{Y|x^*}$ is given by

$$\hat{\mu}_{Y|x^*} \pm t_{\alpha/2;(n-2)} SE_{\hat{\mu}}$$

where,
$$SE_{\hat{\mu}} = s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{(n-1)s_x^2}}$$
, and $s = s_y\sqrt{\frac{(n-1)(1-r^2)}{n-2}}$

- Prediction of Y at a specified value x^* .
 - 1. Point Estimate. For a specific value x*, the predicted value of Y is given by

$$\hat{y} = \hat{a} + \hat{b}x^*$$

2. Prediction Interval. For a specific value x*, the $(1-\alpha)100\%$ prediction interval is given by

$$\hat{y} \pm t_{\alpha/2;(n-2)} SE_{\hat{y}}$$

where,
$$SE_{\hat{y}} = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{(n-1)s_x^2}}$$
, and $s = s_y\sqrt{\frac{(n-1)(1-r^2)}{n-2}}$

• Blood Pressure Measurements. To see if there is a linear relationship between the Systolic and Diastolic blood pressure of a person, the following measurements from 14 randomly selected individuals were recorded.

Person	1	2	3	4	5	6	7
Systolic(x)	138	130	135	140	120	125	120
Diastolic (y)	82	91	100	100	80	90	80
Person	8	9	10	11	12	13	14
Systolic(x)	130	130	144	143	140	130	150
Diastolic (y)	80	80	98	105	85	70	100

- **1.** Determine the correlation coefficient r.
- 2. What can you say about the linear relationship of x and y? Is it a strong linear relationship.
- 3. Determine the coefficient of determination r^2 . Explain the meaning of this quantity in this context.
- 4. Determine the regression line.

5	Test	H_{\circ}	: b =	0 vs	H_1	· h	\neq	n
J.	Test	110	. 0 —	U VS.	111	. 0	+	U

- **6.** Construct a 95% confidence interval for b.
- 7. Find an estimate to the expected diastolic blood pressure (μ_y) for people with a systolic reading of 122.
- 8. Construct a 95% confidence interval for μ_y for people with a systolic reading of 122.
- 9. Find the best predicted diastolic blood pressure for a person with a systolic reading of 122.
- 10. Construct a 95% confidence interval for \hat{y} for a person with a systolic reading of 122.
- Homework Problem: Consider the following data of 10 production runs of a certain manufacturing company.

Production run	1	2	3	4	5	6	7	8	9	10
Lot size (x)	30	20	60	80	40	50	60	30	70	60
Man-Hours (y)	73	50	128	170	87	108	135	69	148	132

- 1. Determine the correlation coefficient r.
- **2.** What can you say about the linear relationship of x and y? Is it a strong linear relationship.
- **3.** Determine the coefficient of determination r^2 . Explain the meaning of this quantity in this context.

4. Determine the regression line.
5. Using $\alpha = 0.01$, test $H_0: b = 0$ vs. $H_1: b \neq 0$
6. Construct and interpret a 99% confidence interval for b .
7. Find an estimate for the mean number of man-hours $(\hat{\mu}_{Y x^*})$ required to produce a lot size 100
8. Construct a 95% confidence interval for the mean number of man-hours $(\mu_{Y x^*})$ required to produce a lot size 100.
9. Predict the number of man-hours (\hat{y}) required to produce a lot size 100.
10. Construct a 95% prediction interval for the number of man-hours (\hat{y}) required to produce a losize 100.
Homework problems: Section 11.3/11.4: (pp. 615-616) # 33, 34. Section 11.5: (pp. 621-624) # 47, 48, 49.

Section 11.8: (pp. 641-642) # 86, 87.