Z-score

• Review: Consider the random sample of 21 patients that yielded the following data on length of stays, in days.

5	28	1	24	15	13	9
3	1	7	6	2	10	12
4	5	18	6	9	9	13

- 1. If $\sum x_i = 200$ and $\sum x_i^2 = 2936$, find
 - **a.** \bar{x}
 - **b.** s_x^2
 - $\mathbf{c.} \ s_x$
- 2. If 5 is subtracted from each observation, find
 - a. the sample mean of the new set of values.
 - **b.** s^2 of the new set of values.
- **3.** If the sample mean (\bar{x}) is subtracted from each observation $(y_i = x_i \bar{x})$,
 - **a.** what is the sample mean of the new set of observations (\bar{y}) ?
 - **b.** what happens to the variance (s_y^2) ?
- **4.** Let $z_i = \frac{x_i \bar{x}}{s_x}$, find
 - $\mathbf{a.}~\bar{z}$
 - **b.** s_z^2
- The sample z-score for a measurement x is $z = \frac{x \bar{x}}{s}$.
- The population z-score for a measurement x is $z = \frac{x \mu}{\sigma}$.

• Five number summary

- 1. Minimum $X_{(1)}$
- **2.** First Quartile Q_1
- 3. Median \tilde{X}
- 4. Third Quartile Q_3
- 5. Maximum $X_{(n)}$

Homework.

Section 2.7: (pp. 84 - 85) # 2.106, 2.116.

Section 2.8: (pp. 94 - 95) # 2.120, 2.125, 2.126.