NAME	February 19, 2018
MTH 207 - Calculus I	Exam I

Instructions: Please include all relevant work to get full credit. Write your solutions using proper notations. Encircle your final answers.

1. Evaluate the limit, if it exists. If the limit does not exist, write ∞ , $-\infty$, or **DNE**.

a.
$$\lim_{x \to -3} \frac{2x^2 - 18}{x^2 + 2x - 3}$$
 [6]

b.
$$\lim_{x \to \infty} \frac{2x^2 - 18}{x^2 + 2x - 3}$$
 [6]

c.
$$\lim_{x \to 2} \frac{x - \sqrt{x+2}}{x-2}$$
 [8]

$$\mathbf{d.} \lim_{t \to \infty} \sqrt{t^2 + 10t} - t \tag{8}$$

$$\mathbf{e.} \lim_{x \to -1^{-}} \frac{|x-1|}{\llbracket x \rrbracket - 1}$$

$$[5]$$

2. Using the $\epsilon - \delta$ definition of the limit, prove that $\lim_{x \to 2} 10 - 3x = 4$. [10]

3. Prove the **Squeeze Theorem**. That is, if $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$. [10]

4. Use the Intermediate-Value Theorem to show that the equation $x^3 + x = 4x^2 - 3$ has at least one solution between 1 and 2. [8]

5. Let

$$f(x) = \begin{cases} ax^2 + b & , x \le 1\\ 1/x & , x > 1 \end{cases}$$

Find the values of a and b so that f(x) is differentiable at x = 1. [10]

6. Determine the derivative of the following functions (You don't have to simplify):

a.
$$y = 2\sqrt[3]{2-x}(2x+1)^4$$
 [7]

b.
$$y = \frac{3x+2}{(3-2x)^3}$$
 [7]

c.
$$f(t) = e^{(3t^2)} 4^{3t}$$
 [8]

d.
$$f(t) = \ln(3t^2 \log_2 t)$$
 [8]

7. Find
$$\frac{dy}{dx}$$
 if $\tan^2(x+y) = \sin^{-1}(x) + \sec^{-1} y.$ [10]

8. If
$$x^2y^2 = 2$$
, $y = f(x)$, show that $\frac{d^2y}{dx^2} = y^3$. [10]

- 9. If an object is thrown vertically, its height (in feet) after t seconds is $H(t) = -16t^2 + v_0t + h_0$, where v_0 is the initial velocity of the object and h_0 is its initial height from the ground. Suppose a ball in thrown vertically upward with an initial velocity of $v_0 = 32$ ft/sec from the top of a building that is 128 ft high.
 - **a.** What is the velocity of the ball 2 seconds later?

[6]

b. When will the ball hit the ground? What is the velocity of the ball when it hits the ground? [8]

10. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of 2 cm³/sec, how fast is the water level rising when the water is 5 cm deep? [Note: Volume of a cone is $V = \frac{1}{3}\pi r^2 h$] [10]

11. Find the linearization L(x) of $f(x) = \sqrt[3]{1+6x}$ at a = 0. Then use it to estimate the value of $\sqrt[3]{1.005}$ [10]