Limits

• Intuitive Definition of a Limit: Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say that the "limit of f(x), as x approaches to a, equals L," if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

• Definition of One-Sided Limits: We write

$$\lim_{x \to a^-} f(x) = L$$

and say that the left-hand limit of f(x), as x approaches to a [or the **limit of** f(x) as x approaches a from the left is equal L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x less than a, and

$$\lim_{x \to a^+} f(x) = L$$

and say that the **right-hand limit of** f(x), as x approaches to a from the right is equal L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x greater than a.

- Theorem 2.1: $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = L$ and $\lim_{x \to a^+} f(x) = L$ %vskip .2in
- Intuitive Definition of an Infinite Limit: Let f(x) is defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we like) by taking x sufficiently close to a, but not equal to a, and

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large (as large as we like) by taking x sufficiently close to a, but not equal to a.

• Vertical Asymptotes: The vertical line x = a is called a *vertical asymptote* of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{\substack{x \to a}} f(x) = \infty \qquad \lim_{\substack{x \to a^-}} f(x) = \infty \qquad \lim_{\substack{x \to a^+}} f(x) = \infty$$
$$\lim_{x \to a^+} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty$$

- Limit Laws: Suppose that c is a constant and the limits $\lim f(x)$ and $\lim q(x)$ exist. Then

 - 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ 2. $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$

3. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$ 4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$

• Additional of Limit Laws:

1. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$ where *n* is a positive integer

2.
$$\lim_{x \to a} c = c$$

- **3.** $\lim x = a$ where *n* is a positive integer
- 4. $\lim x^n = a^n$ where n is a positive integer
- 5. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ where *n* is a positive integer. (If *n* is even, we assume a > 0)
- **6.** $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer. (If *n* is even, we assume $\lim_{x \to a} f(x) > 0$)
- **Direct Substitution Property:** If *f* is a polynomial or a rational function and *a* is in the domain of *f*, then

$$\lim_{x \to a} f(x) = f(a).$$

- Theorem 2.2: If $f(x) \leq g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.
- The Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.
- Precise Definition of a Limit: Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches to a is L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \epsilon$

• **Precise Definition of an Infinite Limit:** Let *f* be a function defined on some open interval that contains the number *a*, except possibly at *a* itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that for every positive number M there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $f(x) > M$

Also

$$\lim_{x \to a} f(x) = -\infty$$

means that for every negative number N there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $f(x) < N$