Continuity

- Definition of Continuity: A function f is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$.
- One-Sided Continuity: A function f is continuous from the right at a number a if $\lim_{x \to a^+} f(x) = f(a)$ and f is continuous from the left at a number a if $\lim_{x \to a^+} f(x) = f(a)$.
- Continuity in an Interval: A function f is continuous on an interval if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean continuous from the right or continuous from the left.)
- **Theorem 2.4:** If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1. f + g **2.** f - g **3.** cf**4.** fg **5.** f/g if $g(a) \neq 0$

- Theorem 2.5:
 - (a) Any polynomial is continuous everywhere; that is, it is continuous on $\Re = (-\infty, \infty)$.
 - (b) Any rational function is continuous wherever it is defined; that is, it continuous on its domain.
- **Theorem 2.7:** The following types of functions are continuous at every number in their domains:
 - polynomials
 - rational functions
 - root functions
 - trigonometric functions
 - inverse trigonometric functions
 - exponential functions
 - logarithmic functions

• **Theorem 2.8:** If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words, $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$

- Theorem 2.9: If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.
- The Intermediate Value Theorem: Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.