Sec 2.6: Limits at Infinity

• Intuitive Definition of a Limit at Positive Infinity: Let f(x) be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

• Intuitive Definition of a Limit at Negative Infinity: Let f(x) be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

• Horizontal Asymptotes: The horizontal line y = L is called a *horizontal* asymptote of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \qquad \text{ or } \qquad \lim_{x \to -\infty} f(x) = L$$

- Theorem 2.10: If r > 0 is a rational number, then $\lim_{x \to \infty} \frac{1}{x^r} = 0$. If r > 0 is a rational number such that x^r is defined for all x, then $\lim_{x \to -\infty} \frac{1}{x^r} = 0$.
- Precise Definition of a Limit at Positive Infinity: Let f be a function defined on some open interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

if for every number $\epsilon > 0$ there is a corresponding N such that

if
$$x > N$$
 then $|f(x) - L| < \epsilon$.

• Precise Definition of a Limit at Negative Infinity: Let f be a function defined on some open interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

if for every number $\epsilon > 0$ there is a corresponding N such that

if
$$x < N$$
 then $|f(x) - L| < \epsilon$.

• Precise Definition of an Infinite Limit at Infinity: Let f be a function defined on some open interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = \infty$$

means that for every positive number ${\cal M}$ there is a corresponding positive number ${\cal N}$ such that

if
$$x > N$$
 then $f(x) > M$.