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Integrals

e Definite Integral: If f(z) is a function defined for a < x < b, we divide the interval [a, b] into n subintervals
of equal width Ax = (b — a)/n. We let xo(= a),x1,x2,...,2,(= b) be the endpoints of these subintervals
and we let 27, 3, ..., z}, be any sample points in these subintervals, so z} lies in the ith subinterval [z;_1, z;].
Then the definite integral of f(x) from a to b is
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e Theorem 5.2.1: If f(x) is continuous on [a, b], or if f(z) has only a finite number of jump discontinuities,
then f(z) is integrable on [a, b]; that is, the definite integral fab f(x) dx exists.

e Properties of Definite Integral:
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e Fundamental Theorem of Calculus, Part I: If f(z) is continuous on [a, b, then the function g(x) defined
by
:/f(t)dt a<zx<b

is continuous on [a, b] and differentiable on (a,b), and ¢'(x) = f(z).

e Fundamental Theorem of Calculus, Part II: If f(z) is continuous on [a, b], then

b
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where F'(x) is any antiderivative of f(z).



