Confidence Intervals for One Population

- Estimating the population mean (μ) when σ is known.
 - 1. Use $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$. Z follows the N(0, 1).
 - **2.** The $(1-\alpha)100\%$ confidence interval for μ is $\left[\bar{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right]$.
 - **a.** The 90% C.I. for μ is $\left[\bar{x} 1.645 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.645 \frac{\sigma}{\sqrt{n}} \right]$.
 - **b.** The 95% C.I. for μ is $\left[\bar{x} 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}} \right]$.
 - **c.** The 99% C.I. for μ is $\left[\bar{x} 2.576 \frac{\sigma}{\sqrt{n}}, \bar{x} + 2.576 \frac{\sigma}{\sqrt{n}} \right]$.
 - **3.** The Margin of Error, $M = Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$.
 - **4.** For a specified margin of error M, the required sample size is $n = \left(\frac{Z_{\frac{\alpha}{2}}\sigma}{M}\right)^2$.
- One-Sided Confidence Intervals when σ is known.
 - 1. A large-sample upper confidence bound for μ is

$$\mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

2. A large-sample lower confidence bound for μ is

$$\mu > \bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

- Estimating the population mean (μ) when σ is unknown.
 - 1. Use $T = \frac{\bar{X} \mu}{s/\sqrt{n}}$. T follows the student t-distribution with n-1 degrees of freedom.
 - **2.** The $(1-\alpha)100\%$ confidence interval for μ is $\left[\bar{x}-(t_{\{\frac{\alpha}{2},(n-1)\}})\frac{s}{\sqrt{n}},\bar{x}+(t_{\{\frac{\alpha}{2},(n-1)\}})\frac{s}{\sqrt{n}}\right]$.
 - **3.** The Margin of Error, $M = (t_{\{\frac{\alpha}{2},(n-1)\}}) \frac{s}{\sqrt{n}}$.
- **Prediction Interval.** A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$\bar{x} - (t_{\{\frac{\alpha}{2},(n-1)\}})s\sqrt{1+\frac{1}{n}}$$

• Tolerance Interval. Let k be a number between 0 and 100. A tolerance interval for capturing at least k% of the values in a normal population distribution with a confidence level of 95% has the form

$$\bar{x} - (tolerance\ critical\ value) \cdot s$$

• Estimating the population proportion (p) when the sample size is large.

1. The unbiased estimator of p is the sample proportion $\hat{p} = \frac{Y}{n}$, where Y is the number of successes in the sample.

Recall that if $Y \sim \text{bin}(n, p)$, then E(Y) = np and Var(Y) = np(1 - p). Therefore, $E(\hat{p}) = p$ and $Var(\hat{p}) = \frac{p(1-p)}{n}$.

2. The $(1-\alpha)100\%$ confidence interval for p is $\left[\hat{p}-(z_{\frac{\alpha}{2}})\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+(z_{\frac{\alpha}{2}})\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$.

3. The Margin of Error,
$$M = (z_{\frac{\alpha}{2}})\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 \Rightarrow $n = \frac{z_{\alpha/2}^2\hat{p}(1-\hat{p})}{M^2} \le \frac{z_{\alpha/2}^2(0.25)}{M^2}$.

• Estimating the population proportion (p).

The $(1-\alpha)100\%$ confidence interval for p is

$$\left[\frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} - z_{\alpha/2}\sqrt{\frac{\hat{p}\hat{q}}{n} + \frac{z_{\alpha/2}^2}{4n^2}}}{1 + z_{\alpha/2}^2/n}, \frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} - z_{\alpha/2}\sqrt{\frac{\hat{p}\hat{q}}{n} + \frac{z_{\alpha/2}^2}{4n^2}}}{1 + z_{\alpha/2}^2/n}\right]$$

• Estimating the population variance (σ^2) and population s.d. (σ) .

- 1. Use the statistic, $X^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i \bar{X})^2}{\sigma^2}$. X^2 follows the chi-squared (χ^2)) distribution with (n-1) degrees of freedom.
- **2.** The $(1-\alpha)100\%$ confidence interval for σ^2 of a normal population is

$$\left[\frac{(n-1)s^2}{\chi^2_{\alpha/2,df=n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,df=n-1}}\right]$$