Covariance and Correlation

• Expected Value. Let X and Y be jointly distributed rv's with pmf p(x, y) or pdf f(x, y) according to whether the variables are discrete or continuous. Then the expected value of a function h(X, Y), denoted by E[h(X, Y)] or $\mu_{h(X,Y)}$, is given by

$$E[h(X,Y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y)p(x,y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y)\,dxdy & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

Example 1: Consider the random variables given in example 5.1. Find E(X + Y).

Example 2: Consider the random variables given in example 5.5. Find E(X + Y).

• Covariance. The *covariance* between two random variables X and Y is

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

= $E(XY) - \mu_X \mu_Y$
= $\begin{cases} \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y)p(x,y) & \text{if } X \text{ and } Y \text{ are discrete} \end{cases}$
= $\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x,y) \, dx \, dy & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$

Note: Cov(X, X) = Var(X). Example 3: Consider the random variables given in example 5.1. Find Cov(X, Y). Example 4: Consider the random variables given in example 5.5. Find Cov(X, Y).

• Correlation. The correlation coefficient of X and Y, denoted by Corr(X,Y), $\rho_{X,Y}$, or just ρ , is defined by

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Example 5: Consider the random variables given in example 5.1. Find Corr(X, Y).

Example 6: Consider the random variables given in example 5.5. Find Corr(X, Y).

• Propositions.

- **1.** If a and c are either both positive or both negative, then Corr(aX + b, cY + d) = Corr(X, Y).
- **2.** For any two rv's X and $Y, -1 \leq Corr(X, Y) \leq 1$.
- **3.** If X and Y are independent, then $\rho = 0$, but $\rho = 0$ does not imply independence.
- **4.** $\rho = 1$ or $\rho = -1$ iff Y = aX + b for some numbers a and b with $a \neq 0$.

• Homework problems:

Section 5.2: pp. 211-212; # 22, 27, 28, 33, 35.