Gamma Distribution

• Gamma Function. For $\alpha > 0$, the gamma function $\Gamma(\alpha)$ is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

• Gamma Distribution. A continuous random variable X is said to have a gamma distribution with parameters α and β , where $\alpha > 0, \beta > 0$, if the pdf of X is

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} \qquad x \ge 0$$

Remarks:

- 1. $E(X) = \alpha \beta$.
- **2.** $Var(X) = \alpha \beta^2$.
- Special Cases:
 - **1.** Standard Gamma Distribution. When $\beta = 1$.

A continuous random variable X is said to have a *standard gamma distribution* if the pdf of X is

$$f(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \qquad x \ge 0$$

Remarks:

- **a.** E(X) =**b.** Var(X) =
- **2.** Exponential Distribution. When $\alpha = 1$ and $\beta = \frac{1}{\lambda}$. A continuous random variable X is said to have an exponential distribution with parameter $\alpha > 0$ if the pdf of X is

$$f(x) = \lambda e^{-\lambda x} \qquad x \ge 0$$

Remarks:

a. E(X) =**b.** Var(X) =

3. Chi-Squared Distribution. When $\alpha = \nu/2$ and $\beta = 2$.

A continuous random variable X is said to have a *chi-squared distribution* with parameter $\nu > 0$ if the pdf of X is

$$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2} \qquad x \ge 0$$

The parameter ν is called the *number of degrees of freedom* (df) of X. The symbol χ^2 is often used in place of "chi-squared".

Remarks:

a. E(X) =**b.** Var(X) =

• Homework problems:

Section 4.4: pp. 170-171; # 59, 61, 63, 65, 67.