Chapter 6: Multiple Regression

• Multiple Regression Model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i$$
 $(i = 1, 2, \dots, n; n > k)$

where,

- ε_i 's are uncorrelated with a mean of 0 and constant variance σ_{ε}^2 .
- ε_i 's are normally distributed. (This is needed to do inferences about the coefficients.)
- Least-Square Regression Equation:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_k x_k$$

by choosing $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ to minimize $SS(Residual) = \sum_i (y_i - \hat{y}_i)^2$

Obtaining Model Parameter Estimates

```
data.health=read.csv("HealthExam.csv",header=T)
head(data.health)
Gender Age Height Weight Waist Pulse SysBP DiasBP Cholesterol BodyMass Leg Elbow Wrist Arm
          12
                63.3 156.3 81.4
                                       64
                                          104
                                                                  89
                                                                          27.5 41.0
                                                                                       6.8
                57.0 100.7 68.7
                                            106
                                                                   2
                                                                          21.9 33.8
                                                                                       5.6
                63.0 156.3 86.7
                                            109
                                                                  78
attach(data.health)
result2=lm(Weight~Waist+Height)
                                      Weight = -201.5717 + 2.1565*Waist + 2.5978*Height.
summary(result2)
Coefficients:
              Estimate Std.
                             xrror t value Pr(>|t|)
                                                                Both p-values are <0.05, therefore, both
                         21.5686 -9.346 2.59e-14 ***
(Intercept) -201.5717
                                                                variables have significant effects on Weight.
                            0.1003 21.500 < 2e-16 ***
0.3438 7.557 7.22e-11 ***
Waist
                2.1565
Height
                2.5978
                                                                       Since R^2 will keep on increasing as we put
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                       more explanatory variables in the model,
                                                                       the adjusted R^2 is an alternative measure
Residual standard error: 11.2 on 77 degrees of freedom
Multiple R-squared: 0.8996,
                                    Adjusted R-squared: 0.8969
                                                                       that can be used to help choose between
F-statistic: 344.8 on 24and 77 DF, p-value: < 2.2e-16
                                                                       two competing models. This measure gets
                                                                       a penalty for the number of explanatory
  By including Height in the model we increased R<sup>2</sup> by 0.0745. Hence, our
                                                                       variables in the model.
  new model is able to explain 7.45% more of the variability in Weight.
```

Prediction and Model Assessments

Predict the weight of 2 individuals – one with waist size of 80 cm and height of 60 in and another with waist size of 90 cm and height of 70 inches.

```
Since, Weight = -201.5717 + 2.1565*Waist + 2.5978*Height
                                                                        20
Weight1=-201.5717+2.1565*80+2.5978*60
                                                     # 126.8163
Weight2=-201.5717+2.1565*90+2.5978*70
                                                     # 174.3593
predict(result2,newdata=data.frame(Waist=c(80,90),Height=c(60,70)))
126.8145 174.3573
confint(result2,level=.99)
                  0.5 %
                              99.5 %
(Intercept) -258.538718 -144.604756
                                                                        30
               1.891574
                          2.421405
Waist
               1.689847
                            3.505723
Height
                                                                        20
# Model Assessments
                                                                      result2$res
qqnorm(result2$res);qqline(result2$res)
shapiro.test(result2$res)
\# W = 0.9884, p-value = 0.6898
                                                                        -10
plot(result2$fit,result2$res)
                                                                        -20
```

