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Coefficients of Partial Determination

• Definitions.

1. Coefficient of Multiple Determination: R2 = SSR/SSTO = 1− SSE/SSTO.

2. Coefficient of Partial Determination with 2 Predictors:

R2
1|2 = SSR(X1|X2)/SSE(X2).

R2
2|1 = SSR(X2|X1)/SSE(X1).

3. Coefficient of Partial Determination with 3 Predictors:

R2
1|23 = SSR(X1|X2, X3)/SSE(X2, X3).

R2
2|13 = SSR(X2|X1, X3)/SSE(X1, X3).

R2
3|12 = SSR(X3|X1, X2)/SSE(X1, X2).

• Body Fat Example. The values stored in ‘BodyFat.csv’ file contains the data for a study of the relation of
amount of body fat (Y ) to several possible predictor variables, based on a sample of 20 healthy females 25-34
years old. The possible predictor variables are triceps skinfold thickness (X1), thigh circumference (X2), and
midarm circumference (X3). The amount of body fat for each of the 20 persons was obtained by a cumbersome
and expensive procedure requiring the immersion of the person in water. It would therefore be very helpful if
a regression model with some or all of these predictor variables could provide reliable estimates of the amount
of body fat since the measurements needed for the predictor variables are easy to obtain.

data.body=read.csv("BodyFat.csv",header=T)

attach(data.body)

y=fat

x1=triceps

x2=thigh

x3=midarm

anova(results.12)

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 352.27 352.27 54.4661 1.075e-06 ***

x2 1 33.17 33.17 5.1284 0.0369 *

Residuals 17 109.95 6.47

results.1=lm(y~x1)

anova(results.1)

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 352.27 352.27 44.305 3.024e-06 ***

Residuals 18 143.12 7.95

# R^2(2|1)=ssr(x2|x1)/sse(x1)=33.17/143.12=0.232

# Hence, the SSE(x1) is reduced by 23.2 percent.

anova(results.123)

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 352.27 352.27 57.2768 1.131e-06 ***

x2 1 33.17 33.17 5.3931 0.03373 *

x3 1 11.55 11.55 1.8773 0.18956

Residuals 16 98.40 6.15

# R^2(3|12)=ssr(x3|x1,x2)/sse(x1,x2)=11.55/109.95=0.105



• Standardized Regression Model

– We use this method when det(X’X) is close to zero OR

– When explanatory variables differ substantially in order of magnitude

• Dwaine Studios Example. Dwaine Studios, Inc, operates portrait studios in 21 cities of medium size. These
studios specialize in portraits of children. The company is considering an expansion into other cities of medium
size and wishes to investigate whether sales (Y ) in a community can be predicted from the number of persons
aged 16 or younger in the community (X1) and the per capita disposable personal income in the community
(X2). The data are stored in ‘DwaineStudios.csv’ file.

data=read.csv("DwaineStudios.csv",header=T)

attach(data)

x1=young

x2=income

y=sales

n=length(sales)

x1.star=((x1-mean(x1))/sd(x1))/sqrt(n-1)

x2.star=((x2-mean(x2))/sd(x2))/sqrt(n-1)

y.star=((y-mean(y))/sd(y))/sqrt(n-1)

results.star=lm(y.star~0+x1.star+x2.star)

#coef(results.star)

# x1.star x2.star

#0.7483670 0.2511039

b1=(sd(y)/sd(x1))*0.7484

b2=(sd(y)/sd(x2))*0.2511

b0=mean(y)-b1*mean(x1)-b2*mean(x2)

#check

lm(y~x1+x2)

• Multicollinearity. When the predictor variables are correlated among themselves, intercorrelation or multi-
collinearity among them is said to exist.

• Uncorrelated Predictor Variables.

# Uncorrelated predictors

x1=c(4,4,4,4,6,6,6,6)

x2=c(2,2,3,3,2,2,3,3)

cor(x1,x2)

y=c(42,39,48,51,49,53,61,60)

anova(lm(y~x1))

anova(lm(y~x2))

anova(lm(y~x1+x2)) # Note that ssr(x2)=ssr(x2|x1)

• Perfectly Correlated Predictor Variables.

# Perfectly correlated predictors

x3=c(2,8,6,10)

x4=c(6,9,8,10)

cor(x3,x4)

coefficients(lm(x4~x3))

y2=c(23,83,63,103)

# y2_hat1=-87+x3+18*x4

# y2_hat2=-7+9*x3+2*x4

# y2_hat3=-17+8*x3+4*x4 # Note that all 3 models give perfect fit.



• Body Fat Example. The values stored in ‘BodyFat.csv’ file contains the data for a study of the relation of
amount of body fat (Y ) to several possible predictor variables, based on a sample of 20 healthy females 25-34
years old. The possible predictor variables are triceps skinfold thickness (X1), thigh circumference (X2), and
midarm circumference (X3). The amount of body fat for each of the 20 persons was obtained by a cumbersome
and expensive procedure requiring the immersion of the person in water. It would therefore be very helpful if
a regression model with some or all of these predictor variables could provide reliable estimates of the amount
of body fat since the measurements needed for the predictor variables are easy to obtain.

data.body=read.csv("BodyFat.csv",header=T)

attach(data.body)

y=fat

x1=triceps

x2=thigh

x3=midarm

coefficients(lm(y~x1))

coefficients(lm(y~x2))

coefficients(lm(y~x1+x2)) # Note how the beta estimates drastically changes as you

coefficients(lm(y~x1+x2+x3)) # include highly correlated predictors

# SSR(x1|x2) and R^2(1|2)

anova(lm(y~x2+x1)) # Note how small the marginal contribution of x1

# when x2 is already in the model.

# SSR(x1|x2) can sometimes be bigger than SSR(x1)

x1=c(5,10,5,10)

x2=c(25,30,5,10)

y=c(20,20,0,1)

temp=data.frame(y=y,x1=x1,x2=x2)

cor(temp)

anova(lm(y~x2))

anova(lm(y~x1+x2)) # x1 is a suppressor variable

# Predictions are still good even with multicollinearity of predictors

x1=triceps

x2=thigh

x3=midarm

y=fat

results=lm(y~x1)

predict(results,new=data.frame(x1=25),interval="confidence",se.fit=T)

results2=lm(y~x1+x2)

predict(results2,new=data.frame(x1=25,x2=50),interval="confidence",se.fit=T)

results3=lm(y~x1+x2+x3)

predict(results3,new=data.frame(x1=25,x2=50,x3=29),interval="confidence",se.fit=T)

• Remedial Measures.

1. Restrict the use of the fitted regression model to inferences for values of the predictor variables that follow
the same pattern of multicollinearity.

2. One or several predictor variables may be dropped from the model.

3. Sometimes it is possible to add some cases that break the pattern of multicollinearity.

4. In some economic studies, it is possible to estimate the regression coefficients for different predictor
variables from different sets of data.

5. The methodology of Principal Components can be used to obtained uncorrelated predictors.

6. Some transformations of the variables might remove or lessen the pattern of multicollinearity.


