
1Getting Started
With R

T he purpose of this chapter is to introduce you to the R language and
interpreter. After describing some of the basics of R, we will proceed to

illustrate its use in a typical, if small, regression problem. We will then provide
a brief description of R functions for familiar operations in basic statistics. The
chapter concludes with an equally brief introduction to the R Commander
graphical user interface (GUI) to R.

We know that many readers are in the habit of beginning a book at
Chapter 1, skipping the Preface. The Preface to this Companion includes
information about installing R and the car package on your computer. The
car package, associated with the R Companion to Applied Regression, is nec-
essary for many of the examples in the text. Moreover, the Preface includes
information on the typographical and other conventions that we use in
the text.

1.1 R Basics

Figure 1.1 shows the RGui (R Graphical User Interface) for the Windows
version of R. The most important element of the Rgui is the R Console win-
dow, which initially contains an opening message followed by a line with just
a command prompt—the greater than (>) symbol. Interaction with R takes
place at the command prompt. In Figure 1.1, we typed a simple command,
2 + 3, followed by the Enter key. R interprets and executes the command,
returning the value 5, followed by another command prompt. Figure 1.2 shows
the similar R.app GUI for the Mac OS X version of R.

The menus in RGui and R.app provide access to many routine tasks, such
as setting preferences, various editing functions, and accessing documenta-
tion. We draw your attention in particular to the Packages menu in the
Windows RGui and to the Packages & Data menu in the Mac OS X R.app,
both of which provide dialogs for installing and updating R packages. Unlike

1



2 Chapter 1 Getting Started With R

Figure 1.1 The RGui interface to the Windows version of R, shortly
after the beginning of a session. This screen shot shows the default multiple-
document interface (MDI); the single-document interface (SDI) looks similar
but consists only of the R Console with the menu bar.

Figure 1.2 The R.app interface to the Mac OS X version of R.

many statistical analysis programs, the standard R menus do not provide direct
access to the statistical functions in R, for which you will generally have to
enter commands at the command prompt.

1.1.1 INTERACTING WITH THE INTERPRETER

Data analysis in R typically proceeds as an interactive dialogue with the
interpreter. We type an R command at the > prompt, press the Enter key,
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and the interpreter responds by executing the command and, as appropriate,
returning a result, producing graphical output, or sending output to a file or
device.

The R language includes the usual arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
ˆ or ** exponentiation

Here are some simple examples of arithmetic in R:

> 2 + 3 # addition

[1] 5

> 2 - 3 # subtraction

[1] -1

> 2*3 # multiplication

[1] 6

> 2/3 # division

[1] 0.6667

> 2ˆ3 # exponentiation

[1] 8

Output lines are preceded by [1]. When the printed output consists of
many values spread over several lines, each line begins with the index number
of the first element in that line; an example will appear shortly. After the inter-
preter executes a command and returns a value, it waits for the next command,
as signified by the > prompt. The pound sign (#) signifies a comment: Text
to the right of # is ignored by the interpreter. We often take advantage of this
feature to insert explanatory text to the right of commands, as in the examples
above.

Several arithmetic operations may be combined to build up complex
expressions:

> 4ˆ2 - 3*2

[1] 10

In the usual notation, this command is 42− 3× 2. R uses standard conven-
tions for precedence of mathematical operators. So, for example, exponentia-
tion takes place before multiplication, which takes place before subtraction. If
two operations have equal precedence, such as addition and subtraction, then
they take place from left to right:
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> 1 - 6 + 4

[1] -1

You can always explicitly specify the order of evaluation of an expression
by using parentheses; thus, the expression 4ˆ2 - 3*2 is equivalent to

> (4ˆ2) - (3*2)

[1] 10

and

> (4 + 3)ˆ2

[1] 49

is different from

> 4 + 3ˆ2

[1] 13

Although spaces are not required to separate the elements of an arithmetic
expression, judicious use of spaces can help clarify the meaning of the
expression. Compare the following commands, for example:

> -2--3

[1] 1

> -2 - -3

[1] 1

Placing spaces around operators usually makes expressions more readable, as
in the preceding examples. Readability of commands is generally improved by
putting spaces around the binary arithmetic operators + and - but not around
*, /, or ˆ.

1.1.2 R FUNCTIONS

In addition to the common arithmetic operators, R includes many—literally
hundreds—of functions for mathematical operations, for statistical data analy-
sis, for making graphs, and for other purposes. Function arguments are values
passed to functions, and these are specified within parentheses after the func-
tion name. For example, to calculate the natural log of 100, that is loge 100 or
ln 100, we type

> log(100)

[1] 4.605

To compute the log of 100 to the base 10, we specify
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> log(100, base=10)

[1] 2

> log10(100) # equivalent

[1] 2

In general, arguments to R functions may be specified in the order in which
they occur in the function definition or by the name of the argument followed
by = (equals sign) and a value. In the command log(100, base=10),
the value 100 is matched to the first argument in the log function. The
second argument, base=10, explicitly matches the value 10 to the argument
base.

Different arguments are separated by commas, and for clarity, we prefer
to leave a space after each comma, although these spaces are not required.
Argument names may be abbreviated, as long as the abbreviation is unique;
thus, the previous example may be rendered more compactly as

> log(100, b=10)

[1] 2

To obtain information about a function, use the help function.
For example,

> help(log)

The result of executing this command is shown in abbreviated form in
Figure 1.3, where the three widely separated dots (...) mean that we have
elided some information. An alternative that requires less typing is to use the
equivalent ? (help) operator, ?log.

Figure 1.3 is a typical R help page, giving first a brief description of the
functions documented in the help page, followed by a listing of the avail-
able arguments, and then a discussion of the arguments. The Details and
Value sections generally describe what the function does. All functions
return a value, and the log function returns the logarithm of its first argu-
ment. Some functions, particularly those that draw graphs, don’t appear to
return a value and are used instead for the side effect of drawing a graph.
Help pages usually include references to related functions, along with exam-
ples that you can execute to see how the documented functions work. Reading
R documentation is an acquired skill, but once you become familiar with the
form of the documentation, you will likely find the help pages very useful.

Help can be displayed in a help window as a plain-text file, or as an HTML
page in a web browser. The HTML help format has several useful features,
such as live hypertext links to other help pages, and is selected by the com-
mand options(help_type="html"). HTML help is the default option
when R is installed.

The help.start() command opens a page in your web browser that
gives direct access to a variety of resources, including HTML versions of the
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log package:base R Documentation
Logarithms and Exponentials
Description:

’log’ computes logarithms, by default natural logarithms,
’log10’ computes common (i.e., base 10) logarithms, and
’log2’ computes binary (i.e., base 2) logarithms. The general
form ’log(x, base)’ computes logarithms with base ’base’.

. . .
’exp’ computes the exponential function.

. . .
Usage:

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)

. . .
exp(x)

. . .
Arguments:

x: a numeric or complex vector.
base: a positive or complex number: the base with respect to which

logarithms are computed. Defaults to e=’exp(1)’.
Details:

All except ’logb’ are generic functions: methods can be
defined for them individually or via the ’Math’ group generic.

. . .
Value:

A vector of the same length as ’x’ containing the transformed
values. ’log(0)’ gives ’-Inf’, and negative values give
’NaN’.

. . .
See Also:

’Trig’, ’sqrt’, ’Arithmetic’.
Examples:

log(exp(3))
log10(1e7)# = 7
x <- 10ˆ-(1+2*1:9)
cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

Figure 1.3 The documentation returned by the command help(log).
The ellipses (. . .) represent elided lines.

R manuals, hyperlinked help for all installed packages, a help search engine,
frequently-asked-questions (FAQ) lists, and more. The help.start() com-
mand is so useful that you may want to put it into a startup file so that the
help browser opens at the beginning of every R session (see the Preface and
?Startup).

A novel feature of the R help system is the facility it provides to execute
most examples in the help pages via the example command:

> example("log")

log> log(exp(3))
[1] 3

log> log10(1e7) # = 7
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[1] 7
. . .

The number 1e7 in the last example is given in scientific notation and repre-
sents 1× 107 = 10 million.

A quick way to determine the arguments of many functions is to use the
args function:

> args(log)

function (x, base = exp(1))
NULL

Because base is the second argument of the log function, we can also type

> log(100, 10)

[1] 2

specifying both arguments to the function (i.e., x and base) by position.
An argument to a function may have a default value—a value that the argu-

ment assumes if it is not explicitly specified in the function call. Defaults are
shown in the function documentation and in the output of args. For example,
the base argument to the log function defaults to exp(1) or e1 ≈ 2.718,
the base of the natural logarithms.

R is largely a functional programming language, which means that both
the standard programs that make up the language and the programs that users
write are functions. Indeed, the distinction between standard and user-defined
functions is somewhat artificial in R.1 Even the arithmetic operators in R are
really functions and may be used as such:

> ‘+‘(2, 3)

[1] 5

We need to place back-ticks around ‘+‘ (single or double quotes also work)
so that the interpreter does not get confused, but our ability to use + and
the other arithmetic functions as in-fix operators, as in 2 + 3, is really just
syntactic “sugar,” simplifying the construction of R expressions but not fun-
damentally altering the functional character of the language.

1.1.3 VECTORS AND VARIABLES

R would not be very convenient to use if we had to compute one value at
a time. The arithmetic operators, and most R functions, can operate on more
complex data structures than individual numbers. The simplest of these data
structures is a numeric vector, or one-dimensional list of numbers.2 In R an
individual number is really a vector with a single element. A simple way to
construct a vector is with the c function, which combines its elements:
1Section 1.1.6 briefly discusses user-defined functions; the topic is treated in greater depth in
Chapter 8. Experienced programmers can also access programs written in Fortran and C from
within R.
2We refer to vectors as “lists” using that term loosely, because lists in R are a distinct data structure
(described in Section 2.3).



8 Chapter 1 Getting Started With R

> c(1, 2, 3, 4)

[1] 1 2 3 4

Many other functions also return vectors as results. For example, the
sequence operator (:) generates consecutive numbers, while the sequence
function (seq) does much the same thing, but more flexibly:

> 1:4 # integer sequence

[1] 1 2 3 4

> 4:1

[1] 4 3 2 1

> -1:2

[1] -1 0 1 2

> seq(1, 4)

[1] 1 2 3 4

> seq(2, 8, by=2) # specify interval

[1] 2 4 6 8

> seq(0, 1, by=0.1) # non-integer sequence

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(0, 1, length=11) # specify number of elements

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The standard arithmetic operators and functions apply to vectors on an
element-wise basis:

> c(1, 2, 3, 4)/2

[1] 0.5 1.0 1.5 2.0

> c(1, 2, 3, 4)/c(4, 3, 2, 1)

[1] 0.2500 0.6667 1.5000 4.0000

> log(c(0.1, 1, 10, 100), 10)

[1] -1 0 1 2

If the operands are of different lengths, then the shorter of the two is
extended by repetition, as in c(1, 2, 3, 4)/2 above; if the length of
the longer operand is not a multiple of the length of the shorter one, then a
warning message is printed, but the interpreter proceeds with the operation,
recycling the elements of the shorter operand:
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> c(1, 2, 3, 4) + c(4, 3) # no warning

[1] 5 5 7 7

> c(1, 2, 3, 4) + c(4, 3, 2) # produces warning

[1] 5 5 5 8

Warning message:
In c(1, 2, 3, 4) + c(4, 3, 2) :

longer object length is not a multiple of shorter object length

R would also be of little use if we were unable to save the results returned
by functions; we do so by assigning values to variables, as in the following
example:

> x <- c(1, 2, 3, 4) # assignment
> x # print

[1] 1 2 3 4

The left-pointing arrow (<-) is the assignment operator; it is composed of the
two characters < (less than) and - (dash or minus), with no intervening blanks,
and is usually read as gets: “The variable x gets the value c(1, 2, 3, 4).”
The equals sign (=) may also be used for assignment in place of the arrow
(<-), except inside a function call, where = is exclusively used to specify
arguments by name. Because reserving the equals sign for specification of
function arguments leads to clearer and less error-prone R code, we encourage
you to use the arrow for assignment, even where = is allowed.3

As the preceding example illustrates, when the leftmost operation in a com-
mand is an assignment, nothing is printed. Typing the name of a variable, as
in the second command immediately above, causes its value to be printed.

Variable names in R are composed of letters (a–z, A–Z), numerals
(0–9), periods (.), and underscores (_), and they may be arbitrarily long. The
first character must be a letter or a period, but variable names beginning with
a period are reserved by convention for special purposes.4 Names in R are
case sensitive; so, for example, x and X are distinct variables. Using descrip-
tive names, for example, total.income rather than x2, is almost always a
good idea.

Three common naming styles are conventionally used in R: (1) separating
the parts of a name by periods, as in total.income; (2) separating them by
underscores, as in total_income; or (3) separating them by uppercase let-
ters, termed camel case, as in totalIncome. For variable names, we prefer
the first style, but this is purely a matter of taste.

R commands using defined variables simply substitute the value of the vari-
able for its name:
3R also permits a right-pointing arrow for assignment, as in 2 + 3 -> x.
4Nonstandard names may be used in a variety of contexts, including assignments, by enclosing the
names in back-ticks, or in single or double quotes (e.g., ’first name’ <- "John"). In most
circumstances, however, nonstandard names are best avoided.
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> x/2

[1] 0.5 1.0 1.5 2.0

> (y <- sqrt(x))

[1] 1.000 1.414 1.732 2.000

In the last example, sqrt is the square-root function, and thus sqrt(x)
is equivalent to xˆ0.5. To obtain printed output without having to type the
name of the variable y as a separate command, we enclose the command in
parentheses so that the assignment is no longer the leftmost operation. We will
use this trick regularly.

Unlike in many programming languages, variables in R are dynamically
defined. We need not tell the interpreter in advance how many values x is
to hold or whether it contains integers (whole numbers), real numbers, char-
acter values, or something else. Moreover, if we wish, we may redefine the
variable x:

(x <- rnorm(100)) # 100 standard normal random numbers

[1] 0.58553 0.70947 -0.10930 -0.45350 0.60589 -1.81796 0.63010
[8] -0.27618 -0.28416 -0.91932 -0.11625 1.81731 0.37063 0.52022

[15] -0.75053 0.81690 -0.88636 -0.33158 1.12071 0.29872 0.77962
. . .
[92] -0.85508 1.88695 -0.39182 -0.98063 0.68733 -0.50504 2.15772
[99] -0.59980 -0.69455

The rnorm function generates standard-normal random numbers, in this case,
100 of them. Two additional arguments, not used in this example, allow us to
sample values from a normal distribution with arbitrary mean and standard
deviation; the defaults are mean=0 and sd=1, and because we did not spec-
ify these arguments, the defaults were used. When a vector prints on more
than one line, as in the last example, the index number of the leading element
of each line is shown in square brackets.

The function summary is an example of a generic function: How it behaves
depends on its argument. Applied as here to a numeric vector,

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.380 -0.590 0.484 0.245 0.900 2.480

summary prints the minimum and maximum values of its argument, along
with the mean, median, and first and third quartiles. Applied to another kind
of object—a matrix, for example—summary gives different information, as
we will see later.

1.1.4 NONNUMERIC VECTORS

Vectors may also contain nonnumeric values. For example,
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> (words <- c("To", "be", "or", "not", "to", "be"))

[1] "To" "be" "or" "not" "to" "be"

is a character vector whose elements are character strings. There are R func-
tions to work with character data. For example, to turn this vector into a single
character string:

> paste(words, collapse=" ")

[1] "To be or not to be"

The very useful paste function pastes strings together (and is discussed,
along with other functions for manipulating character data, in Section 2.4).
The collapse argument, as its name implies, collapses the character vec-
tor into a single string, separating the elements with whatever is between the
quotation marks, in this case one blank space.

A logical vector has all its elements either TRUE or FALSE:

> (vals <- c(TRUE, TRUE, FALSE, TRUE))

[1] TRUE TRUE FALSE TRUE

The symbols T and F may also be used as logical values, but while TRUE and
FALSE are reserved symbols in R, T and F are not, an omission that we regard
as a design flaw in the language. For example, you can perniciously assign
T <- FALSE and F <- TRUE (Socrates was executed for less!). For this
reason, we suggest avoiding the symbols T and F.

Functions are available for working with logical vectors. For example, the
! operator negates a logical vector:

> !vals

[1] FALSE FALSE TRUE FALSE

If we use logical values in arithmetic, R treats FALSE as if it were a zero and
TRUE as if it were a one:

> sum(vals)

[1] 3
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> sum(!vals)

[1] 1

More logical operators are described in the next section.
If we create a vector of mixed character strings, logical values, and num-

bers, we get back a vector of character strings:

> c("A", FALSE, 3.0)

[1] "A" "FALSE" "3"

A vector of mixed numbers and logical values is treated as numeric, with
FALSE becoming zero and TRUE becoming one. (Try it!) In the first case, we
say that the logical and numeric values are coerced to character; in the second
case, the logical values are coerced to numeric. In general, coercion in R takes
place naturally and is designed to lose as little information as possible (see
Section 2.6).

1.1.5 INDEXING VECTORS

If we wish to access—say, to print—only one of the elements of a vector,
we can specify the index of the element within square brackets; for example,
x[12] is the 12th element of the vector x:

> x[12] # 12th element

[1] 1.817

> words[2] # second element

[1] "be"

> vals[3] # third element

[1] FALSE

We may also specify a vector of indices:

> x[6:15] # elements 6 through 15

[1] -1.8180 0.6301 -0.2762 -0.2842 -0.9193 -0.1162 1.8173 0.3706
[9] 0.5202 -0.7505

Negative indices cause the corresponding values of the vector to be omitted:

> x[-(11:100)] # omit elements 11 through 100

[1] 0.5855 0.7095 -0.1093 -0.4535 0.6059 -1.8180 0.6301 -0.2762
[9] -0.2842 -0.9193
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The parentheses around 11:100 serve to avoid generating numbers from
−11 to 100, which would result in an error. (Try it!)

A vector can also be indexed by a logical vector of the same length. Logical
values frequently arise through the use of comparison operators:

== equals
!= not equals
<= less than or equals
< less than
> greater than
>= greater than or equals

The double-equals sign (==) is used for testing equality, because = is reserved
for specifying function arguments and for assignment.

Logical values may also be used in conjunction with the logical operators:
& and
| or

Here are some simple examples:

> 1 == 2

[1] FALSE

> 1 != 2

[1] TRUE

> 1 <= 2

[1] TRUE

> 1 < 1:3

[1] FALSE TRUE TRUE

> 3:1 > 1:3

[1] TRUE FALSE FALSE

> 3:1 >= 1:3

[1] TRUE TRUE FALSE

> TRUE & c(TRUE, FALSE)

[1] TRUE FALSE

> c(TRUE, FALSE, FALSE) | c(TRUE, TRUE, FALSE)

[1] TRUE TRUE FALSE

A somewhat more extended example illustrates the use of the comparison and
logical operators:

> (z <- x[1:10])

[1] 0.5855 0.7095 -0.1093 -0.4535 0.6059 -1.8180 0.6301 -0.2762
[9] -0.2842 -0.9193
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> z < -0.5

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

> z > 0.5

[1] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

> z < -0.5 | z > 0.5 # < and > of higher precedence than |

[1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

> abs(z) > 0.5 # absolute value

[1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

> z[abs(z) > 0.5]

[1] 0.5855 0.7095 0.6059 -1.8180 0.6301 -0.9193

> z[!(abs(z) > 0.5)]

[1] -0.1093 -0.4535 -0.2762 -0.2842

The last of these commands uses the ! operator, introduced in the last section,
to negate the logical values returned by abs(z) > 0.5 and thus returns the
observations for which the condition is FALSE.

A few pointers about using these operators:

• We need to be careful in typing z < -0.5; although most spaces in R
commands are optional, the space after < is crucial: z <-0.5 would
assign the value 0.5 to z. Even when spaces are not required around
operators, they usually help to clarify R commands.

• Logical operators have lower precedence than comparison operators,
and so z < -0.5 | z > 0.5 is equivalent to (z < -0.5) |
(z > 0.5). When in doubt, parenthesize!

• The abs function returns the absolute value of its argument.
• As the last two commands illustrate, we can index a vector by a logical

vector of the same length, selecting the elements with TRUE indices.

In addition to the vectorized and (&) and or (|) operators presented here,
there are special and (&&) and or (||) operators that take individual log-
ical values as arguments. These are often useful in writing programs (see
Chapter 8).

1.1.6 USER-DEFINED FUNCTIONS

As you probably guessed, R includes functions for calculating many com-
mon statistical summaries, such as the mean of a vector:

> mean(x)

[1] 0.2452
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Recall that x was previously defined to be a vector of 100 standard-normal
random numbers. Were there no mean function, we could nevertheless have
calculated the mean straightforwardly using sum and length:

> sum(x)/length(x)

[1] 0.2452

To do this repeatedly every time we need a mean would be inconvenient, and
so in the absence of the standard R mean function, we could define our own
mean function:

> myMean <- function(x) sum(x)/length(x)

• We define a function using the function function.5 The arguments to
function, here just x, are the formal arguments of the function being
defined, myMean. As explained below, when the function myMean is
called, an actual argument will appear in place of the formal argument.
The remainder of the function definition is an R expression specifying
the body of the function.

• The rule for naming functions is the same as for naming variables. We
avoided using the name mean because we did not wish to replace the
standard mean function, which is a generic function with greater utility
than our simple version. For example, mean has an additional argument
na.rm that tells R what to do if some of the elements of x are miss-
ing. We cannot overwrite the definitions of standard functions, but if we
define a function of the same name, our version will be used in place
of the standard function and is therefore said to shadow or mask the
standard function. (This behavior is explained in Section 2.2.) In con-
trast to naming variables, in naming functions, we prefer using camel
case (as in myMean) to separating words by periods (e.g., my.mean),
because periods in function names play a special role in object-oriented
programming in R (see Sections 1.4 and 8.7).

• The bodies of most user-defined functions are more complex than in
this example, consisting of a compound expression comprising several
simple R expressions, enclosed in braces and separated by semicolons
or new-lines. We will introduce additional information about writing
functions as required and take up the topic more systematically in
Chapter 8.

Having defined the function myMean, we may use it in the same manner
as the standard R functions. Indeed, most of the standard functions in R are
themselves written in the R language.6

5We could not resist writing that sentence! Actually, however, function is a special form, not a true
function, because its arguments (here, the formal argument x) are not evaluated. The distinction is
technical, and it will do no harm to think of function as a function that returns a function as its
result.
6Some of the standard R functions are primitives, in the sense that they are defined in code written in
the lower-level languages C and Fortran.
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> myMean(x)

[1] 0.2452

> y # from sqrt(c(1, 2, 3, 4))

[1] 1.000 1.414 1.732 2.000

> myMean(y)

[1] 1.537

> myMean(1:100)

[1] 50.5

> myMean(sqrt(1:100))

[1] 6.715

As these examples illustrate, there is no necessary correspondence between
the name of the formal argument x of the function myMean and the actual
argument to the function. Function arguments are evaluated by the interpreter,
and it is the value of the argument that is passed to the function, not its name.
Thus, in the last of the three examples above, the function call sqrt(1:100)
must first be evaluated, and then the result is used as the argument to myMean.
Function arguments, along with variables that are defined within a function,
are local to the function: Local variables exist only while the function exe-
cutes and are distinct from global variables of the same name. For example,
the last call to myMean passed the value of sqrt(1:100) (i.e., the square
roots of the integers from 1 to 100) to the argument x, but this argument did
not change the contents of the global variable x (see p. 10):

> x

[1] 0.58553 0.70947 -0.10930 -0.45350 0.60589 -1.81796 0.63010
. . .
[99] -0.59980 -0.69455

1.1.7 COMMAND EDITING AND OUTPUT MANAGEMENT

In the course of typing an R command, you may find it necessary to correct
or modify the command before pressing Enter. The Windows R Console
supports command-line editing:7

• You can move the cursor with the left and right arrow, Home, and End
keys.

• The Delete key deletes the character under the cursor.
• The Backspace key deletes the character to the left of the cursor.
• The standard Windows Edit menu and keyboard shortcuts may be

employed, along with the mouse, to block, copy, and paste text.

7The menu selection Help→ Console will display these hints.
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• In addition, R implements a command-history mechanism that allows
you to recall and edit previously entered commands without having to
retype them. Use the up and down arrow keys to move backward and
forward in the command history. Press Enter in the normal manner to
submit a recalled, and possibly edited, command to the interpreter.

The Mac OS X R.app behaves similarly, and somewhat more flexibly, in con-
formity with the usual OS X conventions.

Writing all but the simplest functions directly at the command prompt is
impractical and possibly frustrating, and so using a programming editor with
R is a good idea. Both the Windows and Mac OS X implementations of R
include basic programming or script editors. We recommend that new users
of R use these basic editors before trying a more sophisticated programming
editor. You can open a new R script in the Windows RGui via the File →
New script menu, or an existing script file via File→ Open script. Similar
New Document and Open Document selections are available under the
Mac OS X R.app File menu. By convention, R script files have names that
end with the extension or file type .R—for example, mycommands.R.

We also strongly recommend the use of an editor for data analysis in R, typ-
ing commands into the editor and then submitting them for execution rather
than typing them directly at the command prompt. Using an editor simplifies
finding and fixing errors, especially in multiline commands, and facilitates
trying variations on commands. Moreover, when you work in the
editor, you build a permanent, reusable record of input to your R session as a
by-product.

Using the script editor in the Windows version of R, simply type com-
mands into the editor, select them with the mouse, and then select Edit →
Run line or selection or press the key combination Control-R to send the
commands to the R Console. The procedure is similar in Mac OS X, except
that commands are sent to the R interpreter by pressing the key combination
command-return.

As you work, you can save text and graphical output from R in a word-
processor (e.g., Microsoft Word or OpenOffice Writer) document. Simply
block and copy the text output from the R Console and paste it into the word-
processor document, taking care to use a monospaced (i.e., typewriter) font,
such as Courier New, so that the output lines up properly. Word processors,
however, make poor programming editors, and we recommend against their
use for composing scripts of R commands.

Similarly, under Windows, you can copy and paste graphs: Right-clicking
on a graphics window brings up a context menu that allows you to save the
graph to a file or copy it to the Windows clipboard, from which it can be
pasted into a word-processor document, for example. Alternatively, you can
use the graphics window’s File menu to save a graph. Copying the graph to the
clipboard as a Windows Metafile rather than as a bitmap generally produces
a more satisfactory result. Using R.app under Mac OS X, you can save the
current plot in a Quartz graphics device window via the File → Save as
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menu, which by default saves a PDF file containing the graph; you can then
import the PDF file into a word-processor document.8

For LATEX users, R supports a sophisticated system called Sweave for inter-
leaving text and graphics with executable R code (for details, see Leisch, 2002,
2003). Indeed, we used Sweave to write this book!

1.1.8 WHEN THINGS GO WRONG

No one is perfect, and it is impossible to use a computer without making
mistakes. Part of the craft of computing is learning to recognize the source of
errors. We hope that the following advice and information will help you fix
errors in R commands:

• Although it never hurts to be careful, do not worry too much about
generating errors. An advantage of working in an interactive system is
that you can proceed step by step, fixing mistakes as you go. R is also
unusually forgiving in that it is designed to restore the workspace to its
previous state when a command results in an error.

• If you are unsure whether a command is properly formulated or whether
it will do what you intend, try it out and carefully examine the result.
You can often debug commands by trying them on a scaled-down prob-
lem with an obvious answer. If the answer that you get differs from the
one that you expected, focus your attention on the nature of the differ-
ence. Similarly, reworking examples from this Companion, from R help
pages, or from textbooks or journal articles can help convince you that
your programs are working properly.9

• When you do generate an error, don’t panic! Read the error or warn-
ing message carefully. Although some R error messages are cryptic,
others are informative, and it is often possible to figure out the source
of the error from the message. Some of the most common errors are
merely typing mistakes. For example, when the interpreter tells you that
an object is not found, suspect a typing error, or that you have for-
gotten to load the package or read the file containing the object (e.g.,
a function).

• Sometimes, however, the source of an error may be subtle, particularly
because an R command can generate a sequence of function calls of one
function by another, and the error message may originate deep within
this sequence. The traceback function, called with no arguments,
provides information about the sequence of function calls leading up to
an error. To create a simple example, we begin by writing a function
to compute the variance of a variable, checking the output against the
standard var function:

> myVar <- function(x) sum((x - myMean(x))ˆ2)/(length(x) - 1)
> myVar(1:100)

8See Section 7.4 for more information on handling graphics devices in R.
9Sometimes, however, this testing may convince you that the published results are wrong, but that is
another story.
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[1] 841.7

> var(1:100) # check

[1] 841.7

We deliberately produce an error by foolishly calling myVar with a
nonnumeric argument:

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p"
[17] "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

> myVar(letters)

Error in sum(x) : invalid ’type’ (character) of argument

The built-in variable letters contains the lowercase letters, and of
course, calculating the variance of character data makes no sense.
Although the source of the problem is obvious, the error occurs in the
sum function, not directly in myVar; traceback shows the sequence
of function calls culminating in the error:

> traceback()

2: myMean(x)
1: myVar(letters)

• Not all errors generate error messages. Indeed, the ones that do not are
more pernicious, because you may fail to notice them. Always check
your output for reasonableness, and follow up suspicious results.

• If you need to interrupt the execution of a command, you may do so by
pressing the Esc (escape) key, by using the mouse to press the Stop but-
ton in the toolbar, or (under Windows) by selecting the Misc→ Stop
current computation menu item.

• There is much more information on debugging R code in Section 8.6.1.

1.1.9 GETTING HELP AND INFORMATION

We have already explained how to use the help function and ? operator to
get information about an R function. But what do you do if this information is
insufficient or if you don’t know the name of the function that you want to use?
You may not even know whether a function to perform a specific task exists in
the standard R distribution or in one of the contributed packages on CRAN.
This is not an insignificant problem, for there are hundreds of functions in
the standard R packages and literally thousands of functions in the more than
2,500 packages on CRAN.

Although there is no completely adequate solution to this problem, there
are several R resources beyond help and ? that can be of assistance:10

10In addition, we have already introduced the help.start command, and in Section 4.9, we
describe the use of the hints function in the hints package to obtain information about functions
that can be used with a particular R object.
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• The apropos command searches for currently accessible objects
whose names contain a particular character string. For example,

> apropos("log")

. . .
[7] "dlogis" "is.logical"
[9] "log" "log10"
[11] "log1p" "log2"
[13] "logb" "Logic"
[15] "logical" "logLik"
. . .

• Casting a broader net, the help.search command searches the titles
and certain other fields in the help files of all R packages installed on
your system, showing the results in a pop-up window. For example,
try the command help.search("loglinear") to find functions
related to loglinear models (discussed in Section 5.6). The ?? operator
is a synonym for help.search—for example, ??loglinear.

• If you have an active Internet connection, you can search even more
broadly with the RSiteSearch function. For example, to look in
all standard and CRAN packages—even those not installed on your
system—for functions related to loglinear models, you can issue
the command RSiteSearch("loglinear", restrict=
"functions"). The results appear in a web browser. See ?RSite-
Search for details.

• The CRAN task views are documents that describe facilities in R for
applications in specific areas such as Bayesian statistics, econometrics,
psychometrics, social statistics, and spatial statistics. The approximately
two-dozen task views are available via the command carWeb
("taskviews"), which uses the carWeb function from the car
package, or directly by pointing your browser at http://cran
.r-project.org/web/views/.

• The command help(package="package-name")—for example,
help(package="car")—shows information about an installed
package, such as an index of help topics documented in the package.

• Some packages contain vignettes, discursive documents describing the
use of the package. To find out what vignettes are available in the pack-
ages installed on your system, enter the command vignette(). The
command vignette(package="package-name") displays the
vignettes available in a particular installed package, and the command
vignette("vignette-name") or vignette("vignette-
name", package="package-name") opens a specific vignette.

• The Help menu in the Mac OS X and Windows versions of R provides
self-explanatory menu items to access help pages, online manuals, the
apropos function, and links to the R websites.

• As you might expect, help on R is available on the Internet from a
wide variety of sources. The website www.rseek.org provides a cus-
tom Google search engine specifically designed to look for R-related
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documents (try searching for car using this search site). The page www.
r-project.org/search.html lists other possibilities for web
searching.

• Finally, Rhelp is a very active email list devoted to answering users’
questions about R, and there are also several more specialized R mail-
ing lists (see www.r-project.org/mail.html). Before posting
a question to Rhelp or to one of the other email lists, however, please
carefully read the posting guide at www.r-project.org/posting
-guide.html.

1.1.10 CLEANING UP

User-defined variables and functions exist in R in a region of memory
called the workspace. The R workspace can be saved at the end of a session
or even during the session, in which case it is automatically loaded at the start
of the next session. Different workspaces can be saved in different directories,
as a means of keeping projects separate. Starting R in a directory loads the
corresponding workspace.11

The objects function lists the names of variables and functions residing
in the R workspace:

> objects()

[1] "myMean" "myVar" "vals" "words" "x"
[6] "y" "z"

The function objects requires no arguments, but we nevertheless need to
type parentheses after the function name. Were we to type only the name of
the function, then objects would not be called—instead the definition of
the objects function would be printed. (Try it!) This is an instance of the
general rule that entering the name of an R object—in this case, the function
objects—causes the object to be printed.

It is natural in the process of using R to define variables—and occasionally
functions—that we do not want to retain. It is good general practice in R,
especially if you intend to save the workspace, to clean up after yourself from
time to time. To this end, we use the remove function to delete the variables
x, y, z, vals and words:

> remove(x, y, z, vals, words)

> objects()

[1] "myMean" "myVar"

We keep the functions myMean and myVar, pretending that we still intend to
use them.

11See the R documentation for additional information on organizing separate projects.
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1.1.11 ENDING THE R SESSION

The function quit or its equivalent, q, is used to exit from R:

> quit()

Save workspace image? [y/n/c]:

Answering y will save the workspace in the current directory, an operation
that we generally do not recommend;12 use n to avoid saving the workspace or
c to cancel quitting. Entering quit(save="n") suppresses the question.
You can also exit from R via the File menu or by clicking on the standard
close-window button—the red button at the upper right in Windows and the
upper left in Mac OS X.

1.2 An Extended Illustration: Duncan’s
Occupational-Prestige Regression

In this section, we illustrate how to read data from a file into an R data frame
(data set), how to draw graphs to examine the data using both standard R
functions and some of the specialized functions included in the car package,
how to perform a linear least-squares regression analysis, and how to check
the adequacy of the preliminary regression model using a variety of diagnostic
methods. It is our intention both to introduce some of the capabilities of R and
to convey the flavor of using R for statistical data analysis. All these topics are
treated at length later in the book, so you should not be concerned if you don’t
understand all the details.

The data in the file Duncan.txt were originally analyzed by Duncan
(1961).13 The first few lines of the data file are as follows:

type income education prestige
accountant prof 62 86 82
pilot prof 72 76 83
architect prof 75 92 90
author prof 55 90 76
chemist prof 64 86 90
minister prof 21 84 87
professor prof 64 93 93
dentist prof 80 100 90

12A saved workspace will be loaded automatically in a subsequent session, a situation that often
results in confusion, in our experience, especially among new users of R. We therefore recommend
that you start each R session with a pristine workspace and instead save the script of the commands
you use during a session that you may wish to recover (see the discussion of programming editors in
Section 1.1.7). Objects can then conveniently be re-created as needed by executing the commands in
the saved script. Admittedly, whether to save workspaces or scripts of commands is partly a matter of
preference and habit.
13The Duncan.txt file, along with the other files used in this text, are available on the website for this
Companion, at the web address given in the Preface. To reproduce the example, download the data file
to a convenient location on your hard disk. Alternatively, you can open a copy of the file in your web
browser with the command carWeb(data="Duncan.txt") and then save it to your disk.
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reporter wc 67 87 52
engineer prof 72 86 88
. . .

The first row of the file consists of variable (column) names: type, income,
education, and prestige. Each subsequent row of the file contains data
for one observation, with the values separated by spaces. The rows are occu-
pations, and the first entry in each row is the name of the occupation. Because
there is no variable name corresponding to the first column in the data file,
the first value in each line will become a row name in the data frame that is
constructed from the data in the file. There are 45 occupations in all, only 10
of which are shown.14

The variables are defined as follows:

• type: Type of occupation—bc (blue collar), wc (white collar), or prof
(professional or managerial).

• income: Percentage of occupational incumbents in the 1950 U.S.
Census who earned more than $3,500 per year (about $31,000 in 2008
U.S. dollars).

• education: Percentage of occupational incumbents in 1950 who were
high school graduates (which, were we cynical, we would say is roughly
equivalent to a PhD in 2008).

• prestige: Percentage of respondents in a social survey who rated the
occupation as “good” or better in prestige.

Duncan used a linear least-squares regression of prestige on income
and education to predict the prestige levels of occupations for which the
income and educational levels were known but for which there were no direct
prestige ratings. Duncan did not use occupational type in his analysis.

1.2.1 READING THE DATA

We will use the read.table function to read the data from the file
Duncan.txt into a data frame—the standard R representation of a case-by-
variable data set:

> Duncan <- read.table(file.choose(), header=TRUE)

The file.choose function brings up a standard open-file dialog box,
allowing us to navigate to and select the Duncan.txt file; file.choose
returns the path to this file, which becomes the first argument to read.-
table. The second argument, header=TRUE, alerts read.table to the
variable names appearing in the first line of the data file. The read.table
function returns a data frame, which we assign to Duncan.

14As we will explain in Chapter 2, we can read data into R from a very wide variety of sources
and formats. The format of the data in Duncan.txt is particularly simple, however, and furnishes a
convenient initial example.
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The generic summary function has a method that is appropriate for data
frames. As described in Sections 1.4 and 8.7, generic functions know how
to adapt their behavior to their arguments. Thus, a function such as sum-
mary may be used appropriately with diverse kinds of objects. This ability to
reuse the same generic function for many similar purposes is one of the great
strengths of R. When applied to the Duncan data-frame, summary produces
the following output:

> summary(Duncan)

type income education prestige
bc :21 Min. : 7.0 Min. : 7.0 Min. : 3.0
prof:18 1st Qu.:21.0 1st Qu.: 26.0 1st Qu.:16.0
wc : 6 Median :42.0 Median : 45.0 Median :41.0

Mean :41.9 Mean : 52.6 Mean :47.7
3rd Qu.:64.0 3rd Qu.: 84.0 3rd Qu.:81.0
Max. :81.0 Max. :100.0 Max. :97.0

In the input data file, the variable type contains character data, which
read.table by default converts into a factor—an R representation of
categorical data. The summary function simply counts the number of obser-
vations in each level (category) of the factor. The variables income, edu-
cation, and prestige are numeric, and the summary function reports
the minimum, maximum, median, mean, and first and third quartiles for each
numeric variable.

To access a specific variable in the data frame, we need to provide its fully
qualified name—for example, Duncan$prestige for the variable pres-
tige in the Duncan data frame. Typing the full name can get tedious, and
we can avoid this repetition by using the attach function. Attaching the
Duncan data frame allows us to access its columns by name, much as if we
had directly defined the variables in the R workspace:

> attach(Duncan)
> prestige

[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81 45 92
[21] 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24 20 7 3 16
[41] 6 11 8 41 10

Reading and manipulating data is the subject of Chapter 2, where the topic is
developed in much greater detail. In particular, in Section 2.2 we will show
you generally better ways to work with data frames than to attach them.

1.2.2 EXAMINING THE DATA

A sensible place to start any data analysis, including a regression analysis,
is to examine the data using a variety of graphical displays. For example,
Figure 1.4 shows a histogram for the response variable prestige, produced
by a call to the hist function:

> hist(prestige)
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Figure 1.4 Histogram for prestige in Duncan’s data.

The function hist doesn’t return a value in the R console but rather is
used for the side effect of drawing a graph, in this case a histogram.15 The
histogram may be copied to the clipboard, saved to a file, or printed (see
Section 1.1.7).

The distribution of prestige appears to be bimodal, with observations
stacking up near the lower and upper boundaries. Because prestige is a
percentage, this behavior is not altogether unexpected—many occupations
will either be low prestige, near the lower boundary, or high prestige, near
the upper boundary, with fewer occupations in the middle. Variables such as
this often need to be transformed, perhaps with a logit (log-odds) or similar
transformation. As it turns out, however, it will prove unnecessary to trans-
form prestige.

We should also examine the distributions of the predictor variables, along
with the relationship between prestige and each predictor, and the rela-
tionship between the two predictors. The pairs function in R draws a scat-
terplot matrix. The pairs function is quite flexible, and we take advantage
of this flexibility by placing histograms for the variables along the diagonal of
the graph. To better discern the pairwise relationships among the variables, we
augment each scatterplot with a least-squares line and with a nonparametric-
regression smooth:16

> pairs(cbind(prestige, income, education),
+ panel=function(x, y){
+ points(x, y)
+ abline(lm(y ˜ x), lty="dashed")
+ lines(lowess(x, y))
+ },

15Like all functions, hist does return a result; in this case, however, the result is invisible and is
a list containing the information necessary to draw the histogram. To render the result visible, put
parentheses around the command: (hist(prestige)). Lists are discussed in Section 2.3.
16Nonparametric regression is discussed in the online appendix to the book. Here, the method is used
simply to pass a smooth curve through the data.
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Figure 1.5 Scatterplot matrix for prestige, income, and education
from Duncan’s data.

+ diag.panel=function(x){
+ par(new=TRUE)
+ hist(x, main="", axes=FALSE)
+ }
+ )

Don’t let the apparent complexity of this command worry you. Most graphs
that you will want to draw are much simpler to produce than this one. Later in
this Companion, we will describe functions in the car package that simplify
the drawing of interesting graphs, including scatterplot matrices. Neverthe-
less, this call to pairs allows us to illustrate the structure of commands in R:

• The cbind (column-bind) function constructs a three-column matrix
from the vectors prestige, income, and education, as required
by the pairs function.

• The panel argument to pairs specifies a function that draws each
off-diagonal panel of the scatterplot matrix. The function must have
two arguments, which we call x and y, representing the horizontal and
vertical variables in each plot. The panel function can be either a pre-
defined function or—as here—a so-called anonymous function, defined
on the fly.17 Our panel function consists of three commands:

17The function is termed anonymous because it literally is never given a name: The function object
returned by function is left unassigned.
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1. points(x, y) plots the points.

2. abline(lm(y ˜ x), lty="dashed") draws a broken line
(specified by the line type18 lty="dashed") with intercept and
slope given by a linear regression of y on x, computed by the lm
(linear-model) function. The result returned by lm is passed as an
argument to abline, which uses the intercept and slope of the
regression to draw a line on the plot.

3. lines(lowess(x, y)) draws a solid line, the default line type,
showing the nonparametric regression of y on x. The lowess func-
tion computes and returns coordinates for points on a smooth curve
relating y to x; these coordinates are passed as an argument to lines,
which connects the points with line-segments on the graph.

Because there is more than one R command in the function body, these
commands are enclosed as a block in curly braces, { and }. We indented
the lines in the command to reveal the structure of the R code; this con-
vention is optional but advisable. If no panel function is specified, then
panel defaults to points. Try the simple command:

> pairs(cbind(prestige, income, education))

or, equivalently,

> pairs(Duncan[ ,-1])

This latter form uses all the columns in the Duncan data set except the
first.

• The panel.diagonal argument similarly tells pairswhat, in addi-
tion to the variable names, to plot on the diagonal of the scatterplot
matrix. The function supplied must take one argument (x), correspond-
ing to the current diagonal variable:

1. par(new=TRUE) prevents the hist function from trying to clear
the graph. High-level R plotting functions, such as plot, hist, and
pairs, by default clear the current graphics device prior to draw-
ing a new plot. Lower-level plotting functions, such as points,
abline, and lines, do not clear the current graphics device by
default but rather add elements to an existing graph (see Section 7.1
for details).

2. hist(x, main="", axes=FALSE) plots a histogram for x,
suppressing both the main title and the axes.

18Chapter 7 discusses the construction of R graphics, including the selection of line types.
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The resulting scatterplot matrix for prestige, income, and educa-
tion appears in Figure 1.5 (p. 26). The variable names on the diagonal label
the axes: For example, the scatterplot in the upper-right-hand corner has edu-
cation on the horizontal axis and prestige on the vertical axis.

Like prestige, education appears to have a bimodal distribution.
The distribution of income, in contrast, is best characterized as irregular.
The pairwise relationships among the variables seem reasonably linear, which
means that as we move from left to right across the plot, the points more or
less trace out a straight line, with scatter about the line. In addition, two or
three observations appear to stand out from the others.

If you frequently want to make scatterplot matrices such as this, then it
would save work to write a function to do the repetitive parts of the task:

> scatmat <- function(...) {
+ pairs(cbind(...),
+ panel=function(x, y){
+ points(x, y)
+ abline(lm(y ˜ x), lty=2)
+ lines(lowess(x, y))
+ },
+ diag.panel=function(x){
+ par(new=TRUE)
+ hist(x, main="", axes=FALSE)
+ }
+ )
+ }

The special formal argument ... (the ellipses) will match any number of
actual arguments when the function is called—for example,

> scatmat(prestige, income, education)

produces a graph identical to the one in Figure 1.5. The scatterplot-
Matrix function in the car package (described in Section 3.3.2) is consider-
ably more flexible than the scatmat function just defined.

In many graphs, we would like to identify unusual points by marking them
with a descriptive label. Point identification in R is easier in a scatterplot than
in a scatterplot matrix, and so we draw a separate scatterplot for education
and income:

> plot(income, education)
> # Use the mouse to identify points:
> identify(income, education, row.names(Duncan))

[1] 6 16 27

> row.names(Duncan)[c(6, 16, 27)]

[1] "minister" "conductor" "RR.engineer"

The plot function is the workhorse high-level plotting function in R. Called,
as here, with two numeric vectors as arguments, plot draws a scatterplot of
the variables given as arguments in the order first horizontal axis then vertical
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Figure 1.6 Scatterplot of income by education for Duncan’s data. Three
points were labeled interactively with the mouse.

axis. The identify function allows us subsequently to label points interac-
tively with a mouse. The first two arguments to identify give the coordi-
nates of the points, and the third argument gives point labels; row.names
(Duncan) extracts the observation names from the Duncan data frame to
provide the labels. The result is shown in Figure 1.6. The identify com-
mand returns the indices of the identified points, as we verify by indexing
into the vector of names returned by row.names(Duncan). To duplicate
this figure, you have to move the mouse cursor near each point to be identi-
fied, clicking the left mouse button; after identifying the points, in Windows
click the right mouse button and select Stop to exit from identify, or click
the Stop menu in the graphics device window and select Stop locator. In
Mac OS X, press the esc key to stop identifying points.19 In Section 3.5, we
discuss both interactive and automatic point identification using the graphical
functions in the car package.

Ministers are unusual in combining relatively low income with a
relatively high level of education; railroad conductors and engineers are
unusual in combining relatively high levels of income with relatively low
education. None of these observations, however, are outliers in the uni-
variate distributions of the three variables.

1.2.3 REGRESSION ANALYSIS

Duncan’s interest in the data was in how prestige is related to income
and education in combination. We have thus far addressed the distribu-
tions of the three variables and the pairwise—that is, marginal—relationships
among them. Our plots don’t directly address the joint dependence of

19Control doesn’t return to the R command prompt until you exit from point-identification mode.
New users of R occasionally think that R has frozen when they simply have failed to exit from
identify.



30 Chapter 1 Getting Started With R

prestige on education and income. Graphs for this purpose will be
presented later. Following Duncan, we next fit a linear least-squares regression
to the data to get numerical summaries for the joint dependence of prestige
on the two predictors:

> (duncan.model <- lm(prestige ˜ income + education))

Call:
lm(formula = prestige ˜ income + education)

Coefficients:
(Intercept) income education

-6.065 0.599 0.546

Because we previously attached the Duncan data frame, we can access the
variables in it by name. The argument to lm is a linear-model formula, with
the response variable, prestige, on the left of the tilde (˜). The right-hand
side of the model formula specifies the predictor variables in the regression,
income and education. We read the formula as “prestige is regressed
on income and education.”

The lm function returns a linear-model object, which we assign to the
variable duncan.model. As we explained in Section 1.1.3, enclosing the
assignment in parentheses causes the assigned object to be printed, here pro-
ducing a brief report of the results of the regression. The summary function
produces a more complete report:

> summary(duncan.model)

Call:
lm(formula = prestige ˜ income + education)

Residuals:
Min 1Q Median 3Q Max

-29.538 -6.417 0.655 6.605 34.641

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.0647 4.2719 -1.42 0.16
income 0.5987 0.1197 5.00 1.1e-05 ***
education 0.5458 0.0983 5.56 1.7e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.4 on 42 degrees of freedom
Multiple R-squared: 0.828, Adjusted R-squared: 0.82
F-statistic: 101 on 2 and 42 DF, p-value: <2e-16

Both income and education have highly statistically significant, and
rather large, regression coefficients: For example, holding education con-
stant, a 1% increase in higher income earners is associated on average with
an increase of about 0.6% in high prestige ratings.

R writes very small and very large numbers in scientific notation. For
example, 1.1e-05 is to be read as 1.1 × 10−5, or 0.000011, and 2e-16 =
2× 10−16, which is effectively zero.
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If you find the statistical significance asterisks that R prints annoying, as
we do, you can suppress them, as we will in the remainder of this Companion,
by entering the command:

> options(show.signif.stars=FALSE)

As usual, placing this command in one of R’s start-up files will permanently
banish the offending asterisks (see the discussion of configuring R in the Pref-
ace).20 Linear models are described in much more detail in Chapter 4.

1.2.4 REGRESSION DIAGNOSTICS

Assuming that the regression in the previous section adequately summa-
rizes the data does not make it so. It is therefore wise after fitting a regression
model to check the fit using a variety of graphical and numeric procedures.
The standard R distribution includes some facilities for regression diagnostics,
and the car package associated with this book augments these capabilities. If
you have not already done so, use the library command to load the car
package:

> library(car)

Loading required package: MASS
Loading required package: nnet
Loading required package: leaps
Loading required package: survival
Loading required package: splines

Loading the car package also loads some other packages on which car
depends.

The lm object duncan.model contains a variety of information about
the regression. The rstudent function uses some of this information to
calculate Studentized residuals for the model. A histogram of the Studentized
residuals (Figure 1.7) is unremarkable:

> hist(rstudent(duncan.model))

Observe the sequence of operations here: rstudent takes the linear-model
object duncan.model, previously returned by lm, as an argument and
returns the Studentized residuals, which are passed to hist, which draws
the histogram.

If the errors in the regression are normally distributed with zero means and
constant variance, then the Studentized residuals are each t-distributed with
n − k − 2 degrees of freedom, where k is the number of coefficients in the
model excluding the regression constant and n is the number of observations.
The generic qqPlot function from the car package, which makes quantile-
comparison plots, has a method for linear models:

> qqPlot(duncan.model, labels=row.names(Duncan), id.n=3)

[1] "minister" "reporter" "contractor"
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Figure 1.7 Histogram of the Studentized residuals from the regression of
prestige on income and education.
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Figure 1.8 Quantile-comparison plot for the Studentized residuals from
the regression of prestige on income and education. The broken lines
show a bootstrapped pointwise 95% confidence envelope for the points.

The resulting plot is shown in Figure 1.8. The qqPlot function extracts
the Studentized residuals and plots them against the quantiles of the appropri-
ate t-distribution. If the Studentized residuals are t-distributed and n − k − 2
is large enough so that we can ignore the correlation between the Studen-
tized residuals, then the points should lie close to a straight line. The compari-
son line on the plot is drawn by default by robust regression. In this case, the
residuals pull away slightly from the comparison line at both ends,
suggesting that the residual distribution is a bit heavy-tailed. By default,
qqPlot produces a bootstrapped pointwise 95% confidence envelope for the

20If you like the significance stars, you may need to set options(useFancyQuotes=FALSE) to
get the legend about the stars to print correctly in some cases, for example, in a LATEX document.
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Figure 1.9 Index plots of Cook’s distance and hat-values, from the regres-
sion of prestige on income and education.

Studentized residuals. The residuals nearly stay within the boundaries of the
envelope at both ends of the distribution.

Most of the graphical methods in the car package have arguments that
modify the basic plot. For example, the grid lines on the graph are added by
default to most car graphics; you can suppress the grid lines with the argu-
ment grid=FALSE.21

The car graphics functions also have arguments that are used to identify
points by their labels. In Figure 1.8 we set the argument labels=row.-
names(Duncan) to tell the function the labels to use and the argument
id.n=3 to label three points with values on the horizontal axis farthest from
the mean on the horizontal axis. The default in car graphical functions is
id.n=0, to suppress point identification. Section 3.5 provides a more com-
plete discussion of point labeling.

We proceed to check for high-leverage and influential observations by plot-
ting hat-values (Section 6.3.2) and Cook’s distances (Section 6.3.3) against
the observation indices:

> influenceIndexPlot(duncan.model, vars=c("Cook", "hat"), id.n=3)

The plots are shown in Figure 1.9. We used the id.n=3 argument to label the
three most extreme points in each figure. Points are labeled by row number by
default. Our attention is drawn to cases 6 and 16, which are flagged in both
graphs, and which correspond to the following occupations:

> rownames(Duncan)[c(6, 16)]

[1] "minister" "contractor"

21Grid lines can be added to most plots by first drawing using the plot function and then using
the grid function to add the grid lines. In car graphics functions, we use grid(lty=1) to get
solid-line grids rather than the dotted lines that are the default.
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Figure 1.10 Added-variable plots for income and education in Dun-
can’s occupational-prestige regression.

Because the observations in a regression can be jointly as well as individually
influential, we also examine added-variable plots for the predictors, using the
avPlots function in the car package (Section 6.2.3):

> avPlots(duncan.model, id.n=3, id.cex=0.75)

Each added-variable plot displays the conditional, rather than the marginal,
relationship between the response and one of the predictors. Points at the
extreme left or right of the plot correspond to points that are potentially
influential, and possibly jointly influential. Figure 1.10 confirms and strength-
ens our previous observations: We should be concerned about the occupations
minister (6) and conductor (16), which work together to decrease the
income coefficient and increase the education coefficient. Occupation
RR.engineer (27) has relatively high leverage on these coefficients but is
more in line with the rest of the data. The argument id.cex=0.75 makes
the labels smaller to fit well into the plot. By specifying id.n=3, the
avPlots function automatically labels the three most extreme points on the
horizontal axis and the three points with the largest residuals.

We next use the crPlots function, also in the car package, to generate
component-plus-residual plots for income and education (as discussed
in Section 6.4.2):

> crPlots(duncan.model, span=0.7)

The component-plus-residual plots appear in Figure 1.11. Each plot includes
a least-squares line, representing the regression plane viewed edge-on in the
direction of the corresponding predictor, and a nonparametric-regression
smoother, with the span of the smoother set to 0.7 (see Section 3.2). The
purpose of these plots is to detect nonlinearity, evidence of which is slight
here.
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Figure 1.11 Component-plus-residual plots for income and educa-
tion in Duncan’s occupational-prestige regression. The span of the
nonparametric-regression smoother was set to 0.7.
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Figure 1.12 Spread-level plot of Studentized residuals from Duncan’s
regression of prestige on income and education.

We proceed to check whether the size of the residuals changes systemat-
ically with the fitted values, using the spreadLevelPlot function in the
car package, which has a method for linear models (Section 6.5.1):

> spreadLevelPlot(duncan.model)

Suggested power transformation: 0.8653

The graph produced by spreadLevelPlot (Figure 1.12), shows little
association of residual spread with level; and the suggested power
transformation of the response variable, (prestige)0.87, is essentially no
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transformation at all because the power is quite close to one. Using the
ncvTest function in the car package (Section 6.5.2), we follow up with
score tests for nonconstant variance, checking for an association of residual
spread with the fitted values and with any linear combination of the
predictors:

> ncvTest(duncan.model)

Non-constant Variance Score Test
Variance formula: ˜ fitted.values
Chisquare = 0.3811 Df = 1 p = 0.537

> ncvTest(duncan.model, var.formula= ˜ income + education)

Non-constant Variance Score Test
Variance formula: ˜ income + education
Chisquare = 0.6976 Df = 2 p = 0.7055

Both tests are far from statistically significant, indicating that the assumption
of constant variance is tenable.

Finally, on the basis of the influential-data diagnostics, we try removing the
observations minister and conductor from the regression:

> summary(update(duncan.model, subset=-c(6, 16)))

Call:
lm(formula = prestige ˜ income + education, subset = -c(6, 16))

Residuals:
Min 1Q Median 3Q Max

-28.61 -5.90 1.94 5.62 21.55

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.4090 3.6526 -1.75 0.0870
income 0.8674 0.1220 7.11 1.3e-08
education 0.3322 0.0987 3.36 0.0017

Residual standard error: 11.4 on 40 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.87
F-statistic: 141 on 2 and 40 DF, p-value: <2e-16

Rather than respecifying the regression model from scratch, we refit it using
the update function, removing the two potentially problematic observations
via the subset argument to update. The coefficients of income and edu-
cation have changed substantially with the deletion of these two obser-
vations. Further work (not shown) suggests that removing occupations 27
(RR.engineer) and 9 (reporter) does not make much of a difference.

Chapter 6 has much more extensive information on regression diagnostics
in R, including the use of the various functions in the car package.
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1.3 R Functions for Basic Statistics

The focus of this Companion is on using R for regression analysis, broadly
construed. In the course of developing this subject, we will encounter, and
indeed already have encountered, a variety of R functions for basic statistical
methods (mean, hist, etc.), but the topic is not addressed systematically.

Table 1.1 shows the names of some standard R functions for basic data
analysis. Online help, through ? or help, provides information on the usage
of these functions. Where there is a substantial discussion of a function in
a later chapter in the present text, the location of the discussion is indicated
in the column of the table marked Reference. The table is not meant to be
complete.

1.4 Generic Functions and Their Methods*

Many of the most commonly used functions in R, such as summary, print,
and plot, can have very different actions depending on the arguments passed
to the function.22 For example, the summary function applied to different
columns of the Duncan data frame produces different output. The summary
for the variable Duncan$type is the count in each level of this factor,

> summary(Duncan$type)

bc prof wc
21 18 6

while for a numeric variable, the summary includes the mean, minimum,
maximum, and several quantiles:

> summary(Duncan$prestige)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.0 16.0 41.0 47.7 81.0 97.0

Similarly, the commands

> summary(Duncan)
> summary(lm(prestige ˜ income + education, data=Duncan))

produce output appropriate to these objects—in the first case by summarizing
each column of the Duncan data frame and in the second by returning a
standard summary for a linear-regression model.

In R, allowing the same generic function, such as summary, to be used
for many purposes is accomplished through an object-oriented programming

22The generic print function is invoked implicitly and automatically when an object is printed, for
example, by typing the name of the object at the R command prompt, or in the event that the object
returned by a function isn’t assigned to a variable. The print function can also be called explicitly,
however.
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Table 1.1 Some R functions for basic statistical methods. All functions are
in the standard R packages; chapter references are to this Companion.

Method R Function(s) Reference

histogram hist Ch. 3
stem-and-leaf display stem Ch. 3
boxplot boxplot Ch. 3
scatterplot plot Ch. 3
time-series plot ts.plot
mean mean
median median
quantiles quantile
extremes range
variance var
standard deviation sd
covariance matrix var, cov
correlations cor
normal density, distribution, dnorm, pnorm,

quantiles, and random qnorm, rnorm Ch. 3
numbers

t density, distribution, dt, pt, qt, rt
quantiles, and random Ch. 3
numbers

chi-square density, dchisq, pchisq,
distribution, quantiles, qchisq, rchisq Ch. 3
and random numbers

F density, distribution, df, pf, qf, rf Ch. 3
quantiles, and random numbers

binomial probabilities, distribution, dbinom, pbinom, Ch. 3
quantiles, and random numbers qbinom, rbinom

simple regression lm Ch. 4
multiple regression lm Ch. 4
analysis of variance aov, lm, anova Ch. 4
contingency tables xtabs, table Ch. 5
generating random samples sample, rnorm, etc.
t-tests for means t.test
tests for proportions prop.test,

binom.test
chi-square test for chisq.test Ch. 5

independence
various nonparametric tests friedman.test,

kruskal.test,
wilcox.test, etc.

technique called object dispatch. The details of object dispatch are imple-
mented differently in the S3 and S4 object systems, so named because they
originated in Versions 3 and 4, respectively, of the original S language on
which R is based.

Almost everything created in R is an object, such as a vector, a matrix,
a linear-regression model, and so on.23 In the S3 object system, which we
describe in this section, each object is assigned a class, and it is the class of

23Indeed, everything in R that is returned by a function is an object, but some functions have side
effects that create nonobjects, such as files and graphs.
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the object that determines how generic functions process the object. We defer
consideration of the S4 object system to a later chapter in the book, but it too
is class based and implements a version of object dispatch.24

The class function returns the class of an object:

> class(Duncan$type)

[1] "factor"

> class(Duncan$prestige)

[1] "integer"

> class(Duncan)

[1] "data.frame"

These objects are of classes "factor", "integer", and "data.frame",
consecutively. When the function lm is used, an object of class "lm" is
returned:

> duncan.model <- lm(prestige ˜ income + education)
> class(duncan.model)

[1] "lm"

Generic functions operate on their arguments indirectly by calling special-
ized functions, referred to as method functions or, more compactly, as meth-
ods. Which method function is invoked typically depends on the class of the
first argument to the generic function. For example, the generic summary
function has the following definition:

> summary

function (object, ...)
UseMethod("summary")
<environment: namespace:base>

The generic function summary has one required argument, object, and
the special argument ... (the ellipses) for additional arguments that could be
different for each summary method. When UseMethod("summary") is
applied to an object of class "lm", for example, R searches for a method
function named summary.lm and, if it is found, executes the command
summary.lm(object, ...). It is, incidentally, perfectly possible to call
summary.lm directly; thus, the following two commands are equivalent:

> summary(duncan.model)
> summary.lm(duncan.model)

Although the generic summary function has only one explicit argument,
the method function summary.lm has additional arguments:

24More information on the S3 and S4 object systems is provided in Section 8.7.
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> args(summary.lm)

function (object, correlation = FALSE, symbolic.cor = FALSE,
...)

NULL

Because the arguments correlation and symbolic.cor have default
values (FALSE, in both cases), they need not be specified. Any additional
arguments that are supplied, which are covered by ..., could be passed to
functions that might be called by summary.lm.

Although in this instance we can call summary.lm directly, many method
functions are hidden in the namespaces of packages and cannot normally be
used directly.25 In any event, it is good R form to use method functions indi-
rectly through their generics.

Suppose that we invoke the hypothetical generic function fun with argu-
ment arg of class "cls". If there is no method function named fun.cls,
then R looks for a method named fun=default. For example, objects
belonging to classes without summary methods are printed by summary.-
default. If, under these circumstances, there is no method named fun.-
default, then R reports an error.

We can get a listing of all currently accessible method functions for the
generic summary using the methods function, with hidden methods flagged
by asterisks:

> methods(summary)

[1] summary.aov summary.aovlist summary.aspell*
[4] summary.connection summary.data.frame summary.Date
[7] summary.default summary.ecdf* summary.factor
[10] summary.glm summary.infl summary.lm
. . .
[25] summary.stl* summary.table summary.tukeysmooth*

Non-visible functions are asterisked

These methods may have different arguments beyond the first, and some
method functions, for example, summary.lm, have their own help pages:
?summary.lm.

Method selection is slightly more complicated for objects whose class is
a vector of more than one element. Consider, for example, an object returned
by the glm function (anticipating a logistic-regression example developed in
Section 5.3):

> mod.mroz <- glm(lfp ˜ ., family=binomial, data=Mroz)
> class(mod.mroz)

[1] "glm" "lm"

25For example, the summary method summary.loess is hidden in the namespace of the stats
package; to call this function directly to summarize an object of class "loess", we could reference
the function with the nonintuitive name stats:::summary=loess.
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If we invoke a generic function with mod.mroz as its argument, say fun
(mod.mroz), then the R interpreter will look first for a method named
fun.glm; if a function by this name does not exist, then R will search next for
fun.lm, and finally for fun.default. We say that the object mod.mroz
is of primary class "glm", and inherits from class "lm". Inheritance per-
mits economical programming through generalization, but it can also get us
into trouble if, for example, there is no function fun.glm but fun.lm
is inappropriate for mod.mroz. In a case such as this, the programmer of
fun.lm should be careful to create a function fun.glm, which calls the
default method or reports an error, as appropriate.

1.5 The R Commander Graphical User Interface

There are currently several statistical GUIs to R, the most extensive of
which is the R Commander, implemented in the Rcmdr package.26 The
R Commander began as an interface to be used in an elementary statistics
course but has expanded beyond that original purpose. Most of the statistical
analysis described in this book can be carried out using menu items in the R
Commander.

The R Commander, or any other well-designed statistical GUI, can help
students learn new ideas, by separating the need for memorizing computer
commands from the corresponding statistical concepts. A GUI can also assist
a user who is familiar with the statistical ideas but not with R to make substan-
tial and rapid progress. Finally, the infrequent user of R may find that a GUI
provides access to the program without the burden of learning and relearning
R commands.

With the good comes the bad:

• The R Commander provides access to only a small part of the capa-
bilities of the standard R distribution and to a minuscule fraction of
what’s available in the more than 2,500 packages on CRAN. The user
must trust that the writer of the GUI provided access to all the important
functions, which is usually unlikely.

• Although the R Commander allows you to edit and reuse commands,
it is generally quicker to type R commands than to generate them by
drilling down through the R Commander menus.

• Learning to write R commands and to program in R will allow you to
perform nonstandard tasks and to customize your work (e.g., drawing
graphs—see Chapter 7) in a manner that’s not possible with a GUI.

With these caveats in mind, the R Commander employs a standard menu-
and-dialog-box interface that is meant to be largely self-explanatory. There are
menus across the top of the main R Commander window, which is

26A disclaimer: We are not impartial, because one of us (Fox, 2005b) wrote the Rcmdr package and
the other one insisted that it at least be mentioned in this chapter.
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Figure 1.13 The R Commander in action.

shown, along with some other windows, at the right of the screen shot in
Figure 1.13.

For example, to read the data from the file Duncan.txt into an R data
frame, and to make that data frame the active data set in the R Comman-
der, select Data→ Import data→ from text file, clipboard, or URL, and
then complete the resulting dialog box, which allows you to navigate to the
location of the data file. The R Commander generates and executes an appro-
priate command, which it also writes into its Script Window. Commands and
associated printed output appear in the Output Window, and error and other
messages in the Messages window. Graphs appear in a standard R graphics
device window.

To continue the example, to perform a least-squares regression of
prestige on income and education, select Statistics → Fit models
→ Linear regression (or Linear model), and complete the dialog. The R
Commander generates an lm command. The linear-model object produced
by the command becomes the active model in the R Commander, and various
tests, graphs, and diagnostics can subsequently be accessed under the Model
menu.

For more information, see the introductory manual provided by Help→
Introduction to the R Commander and the help page produced by
Help → Commander help. To install the Rcmdr package, use the com-
mand install.packages("Rcmdr", dependencies=TRUE), and
be prepared to wait awhile as the many direct and indirect dependencies of the
Rcmdr are downloaded from CRAN and installed on your system.




