ANOVA Diagnostics and Remedial Measures

• ANOVA Model:

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

where:

- 1. Y_{ij} is the value of the response variable in the jth trial for the ith treatment.
- **2.** μ_i is the population mean (parameter) for the *i*th treatment.
- **3.** ϵ_{ij} are independent $N(0, \sigma^2)$.
- **4.** $i = 1, \ldots, r; j = 1, \ldots, n_i$.

• Residuals Analysis:

- 1. Residuals: $e_{ij} = Y_{ij} \hat{Y}_{ij}$
- **2.** Semistudentized residuals: $e_{ij}^* = \frac{e_{ij}}{\sqrt{(MSE)}}$
- **3.** Studentized residuals: $r_{ij} = \frac{e_{ij}}{s\{e_{ij}\}}$ where : $s\{e_{ij}\} = \sqrt{\frac{MSE(n_i-1)}{n_i}}$
- **4.** Studentized deleted residuals: $t_{ij} = e_{ij} \left[\frac{n_T r 1}{SSE(1 \frac{1}{n_i}) e_{ij}^2} \right]^{\frac{1}{2}}$
- Diagnosis of Departures from ANOVA Model. Residual plots can be helpful in diagnosing the following departures from the ANOVA Model:
 - 1. Nonnormality of error terms Use normal probability plots (qqplots) of residuals and the Shapiro-Wilk test.
 - 2. Nonconstancy of error variance Plot predicted values versus residuals (residual plot), and/or use the Brown-Forsythe test for equality or error variances.
 - 3. Nonindependence of error terms Look at residual sequence/index plot.
 - **4.** Outliers Look at the residual plot.
 - Omission of important variables Use different icons for values/points from different factor levels of an omitted variable.

```
data=read.csv("RustInhibitors.csv",header=T)
attach(data)
result=aov(score~factor(brand))
anova(result)
                Df Sum Sq Mean Sq F value
# factor(brand) 3 15954 5317.8 866.12 < 2.2e-16 ***
                36
                      221
# Residuals
                              6.1
mse=anova(result)$Mean[2]
                                # mse=6.139833
sse=anova(result)$Sum[2]
                                # sse=221.034
e=result$residuals
predicted=result$fitted
plot(predicted,e)
qqnorm(e); qqline(e)
# Shapiro-Wilk Test
shapiro.test(e)
e.star=e/sqrt(mse)
                            # Semistudentized residuals
data.frame(score,predicted,residuals=e,semistudentized=e.star)
ns=tapply(score,brand,length); nt=sum(ns); r=length(ns)
s.e=sqrt(mse*(ns[brand]-1)/ns[brand])
r=e/s.e
                            # Studentized residuals
```

```
# Studentized deleted residual
t=e*sqrt((nt-r-1)/(sse*(1-1/ns[brand])-e^2))
plot(predicted,e.star)
plot(predicted,r)
plot(predicted,t)
qqnorm(t); qqline(t)
```

• Brown-Forsythe test for equality or error variances.

The Brown-Forsythe test statistics is simply the ordinary F^* statistic for testing differences in the treatment means, but based on the absolute deviations $d_{ij} = |Y_{ij} - \tilde{Y}_i|$, where \tilde{Y}_i is the median of the *i*th treatment. **ANOVA Table**

Source	DF	Sum of Squares	Mean Square	F
Treatments (Between)	r-1	$SSTR = \sum_{i=1}^{r} n_i (\bar{d}_{i\cdot} - \bar{d}_{\cdot\cdot})^2$	$MSTR = \frac{SSTR}{r - 1}$	$F^* = \frac{MSTR}{MSE}$
Error (Within)	$n_T - r$	$SSE = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (d_{ij} - \bar{d}_{i.})^2$	$MSE = \frac{SSE}{n_T - r}$	
Total	$n_T - 1$			

```
data=read.csv("RustInhibitors.csv",header=T)
attach(data)

medians=tapply(score,brand,median)
d=abs(score-medians[brand])
result.bf=aov(d~factor(brand))
anova(result.bf)

# Df Sum Sq Mean Sq F value Pr(>F)
# factor(brand) 3 1.837 0.61233 0.2262 0.8775
# Residuals 36 97.434 2.70650
```

• Transformations of Response Variable.

- 1. Variance Proportional to $\mu_i: Y' = \sqrt{Y}$
- **2.** Standard Deviation proportional to $\mu_i: Y' = \log(Y)$
- **3.** Standard Deviation proportional to $\mu_i^2: Y' = \frac{1}{Y}$
- **4.** Box-Cox Procedure: $Y' = Y^{\lambda}$. Choose λ that minimizes the SSE.

• Kruskal-Wallis Non-parametric Test.

The Kruskal-Wallis test is a widely used nonparametric test for testing the equality of treatment means. This test is based on the ranks R_{ij} from 1 to n_T and is defined as:

$$X_{KW}^2 = \frac{SSTR}{SSTO/(n_T - 1)}$$

```
result.krus=kruskal.test(score,factor(brand))
result.krus
# Kruskal-Wallis chi-squared = 33.7041, df = 3, p-value = 2.288e-07
```