Analysis of Factor Effects

• Factors Do Not Interact

1. Estimation of Factor Level Mean:

Unbiased point estimators of μ_i . and $\mu_{\cdot j}$ are:

$$\hat{\mu}_{i\cdot} = \bar{Y}_{i\cdot\cdot}$$
 and $\hat{\mu}_{\cdot j} = \bar{Y}_{\cdot j\cdot}$

Properties:

a.
$$E\{\bar{Y}_{i..}\} = \mu_{i}$$
 and $E\{\bar{Y}_{.j.}\} = \mu_{.j}$
b. $\sigma^{2}\{\bar{Y}_{i..}\} = \frac{\sigma^{2}}{bn}$ and $\sigma^{2}\{\bar{Y}_{.j.}\} = \frac{\sigma^{2}}{an}$
c. $s^{2}\{\bar{Y}_{i..}\} = \frac{MSE}{bn}$ and $s^{2}\{\bar{Y}_{.j.}\} = \frac{MSE}{an}$
d. $\frac{\bar{Y}_{i..} - \mu_{i.}}{s\{\bar{Y}_{i..}\}} \sim t_{df=(n-1)ab}$ and $\frac{\bar{Y}_{.j.} - \mu_{.j}}{s\{\bar{Y}_{.j.}\}} \sim t_{df=(n-1)ab}$
e. The $(1 - \alpha)$ C.I. for $\mu_{i.}$ is given by $\bar{Y}_{.i.} \pm t_{\frac{\alpha}{2}}s\{\bar{Y}_{.j.}\}$
f. The $(1 - \alpha)$ C.I. for $\mu_{.j}$ is given by $\bar{Y}_{.j.} \pm t_{\frac{\alpha}{2}}s\{\bar{Y}_{.j.}\}$

2. Estimation of Contrast Level Means:

An unbiased point estimator of the contrast $L = \sum_{i=1}^{a} c_i \mu_i$ is $\hat{L} = \sum_{i=1}^{a} c_i \bar{Y}_i$.

a.
$$E\{L\} = \sum_{i=1}^{r} c_i \mu_i$$
.
b. $\sigma^2\{\hat{L}\} = \sum_{i=1}^{a} c_i^2 \frac{\sigma^2}{bn} = \frac{\sigma^2}{bn} \sum_{i=1}^{a} c_i^2$
c. $s^2\{\hat{L}\} = \frac{MSE}{bn} \sum_{i=1}^{a} c_i^2$
d. $\frac{\hat{L} - L}{s\{\hat{L}\}} \sim t_{df=(n-1)ab}$
e. The $(1 - \alpha)$ C.I. for L is given by $\hat{L} \pm t_{\frac{\alpha}{2}} s\{\hat{L}\}$

An unbiased point estimator of the contrast $L = \sum_{j=1}^{b} c_j \mu_{\cdot j}$ is $\hat{L} = \sum_{j=1}^{b} c_j \bar{Y}_{\cdot j}$. **a.** $E\{\hat{L}\} = \sum_{j=1}^{b} c_j \mu_{\cdot j}$

a.
$$L\{L\} = \sum_{j=1}^{b} c_j^2 \frac{\sigma^2}{an} = \frac{\sigma^2}{an} \sum_{j=1}^{b} c_j^2$$

b. $\sigma^2\{\hat{L}\} = \sum_{j=1}^{b} c_j^2 \frac{\sigma^2}{an} = \frac{\sigma^2}{an} \sum_{j=1}^{b} c_j^2$
c. $s^2\{\hat{L}\} = \frac{MSE}{an} \sum_{j=1}^{b} c_j^2$
d. $\frac{\hat{L} - L}{s\{\hat{L}\}} \sim t_{df=(n-1)ab}$
e. The $(1 - \alpha)$ C.I. for L is given by $\hat{L} \pm t_{\frac{\alpha}{2}} s\{\hat{L}\}$

3. Tukey Multiple Comparison Procedure:

The Tukey multiple comparison confidence limits for all pairwise comparisons $D = \mu_{i} - \mu_{i'}$. with family confidence coefficient of at least $1 - \alpha$ are as follows:

$$\hat{D} \pm Ts\{\hat{D}\}$$

where,

a.
$$\hat{D} = \bar{Y}_{i..} - \bar{Y}_{i'..}$$

b. $s^2\{\hat{D}\} = \frac{2MSE}{bn}$
c. $T = \frac{1}{\sqrt{2}}q(1-\alpha; a, (n-1)ab)$

The Tukey multiple comparison confidence limits for all pairwise comparisons $D = \mu_{.j} - \mu_{.j'}$ with family confidence coefficient of at least $1 - \alpha$ are as follows:

$$\hat{D} \pm Ts\{\hat{D}\}$$

where,

a.
$$\hat{D} = \bar{Y}_{.j'.} - \bar{Y}_{.j'.}$$

b. $s^2\{\hat{D}\} = \frac{2MSE}{an}$
c. $T = \frac{1}{\sqrt{2}}q(1-\alpha;b,(n-1)ab)$

4. Scheffe Multiple Comparison Procedure:

When a large number of contrasts among the factor level mean μ_i or μ_j are of interest, the Scheffe method might be better. The Scheffe confidence limits for $L = \sum_{i=1}^{a} c_i \mu_i$ are:

$$\hat{L} \pm Ss\{\hat{L}\}$$

where,

$$S^{2} = (a-1)F[1-\alpha; a-1, (n-1)ab]$$

• Factors Interact

When important interactions exist that cannot be make unimportant by a simple transformation, the analysis of factor effects generally must be based on the treatment means μ_{ij} .

1. Tukey Procedure. The Tukey $1 - \alpha$ multiple comparison confidence limits for all pairwise comparisons, $D = \mu_{ij} - \mu_{i'j'}$ are:

$$\hat{D} \pm Ts\{\hat{D}\}$$

where,

a.
$$\hat{D} = \bar{Y}_{ij} - \bar{Y}_{i'j'}$$

b. $s^2\{\hat{D}\} = \frac{2MSE}{n}$
c. $T = \frac{1}{\sqrt{2}}q(1-\alpha;ab,(n-1)ab)$

2. Bonferroni Procedure. If the Bonferronni method is employed for a family of *g* comparisons, the multiple in the confidence interval is replaced by:

$$B = t_{(1-\alpha/2g;(n-1)ab)}$$

3. Scheffe Procedure. The joint confidence limits for a contrast $L = \sum_{i=1}^{a} \sum_{j=1}^{b} c_{ij} \mu_{ij}$ are:

 $\hat{L} \pm Ss\{\hat{L}\}$

where,

1.
$$\hat{L} = \sum_{i=1}^{a} \sum_{j=1}^{b} c_{ij} \bar{Y}_{ij}$$
.
2. $s^{2}\{\hat{L}\} = \frac{MSE}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} c_{ij}^{2}$
3. $S^{2} = (ab-1)F[1-\alpha; ab-1, (n-1)ab]$