
Math 446 - ANOVA and Experimental Designs Spring 2015

Randomized Complete Block Designs

In experiments where the available experimental units are not homogeneous, grouping the experimental units into blocks
of homogeneous units will reduce the experimental error variance and also increase the range of validity for inferences
about the treatment effects.

• Examples of Randomized Complete Block Designs

1. In an experiment on the effects of four levels of newspaper advertising saturation on sales volume, 16 cities
were included in the study. Size of city usually is highly correlated with the response variable, sales volume.
Hence, it is desirable to block the 16 cities into four groups of four cities each, according to population size.
Within each block, the four treatments are then assigned at random.

2. In an experiment on the effects of three different incentive pay schemes on employee productivity of elec-
tronic assemblies, the experimental unit is an employee, and 30 employees are available for the study. Since
productivity here is highly correlated with manual dexterity, it is desirable to block the 30 employees into
10 groups of three according to their manual dexterity. Thus, the three employees with the highest manual
dexterity ratings are grouped into one block, and so on for the other employees. Within each block, the three
incentive pay schemes are then assigned randomly to the three employees.

3. A chemist is studying the reaction rate of five chemical agents. Only five agents can be analyzed effectively
per day. Since day-to-day differences may affect the reaction rate, each day is used as a block, and all five
chemical agents are tested each day in independently randomized orders.

• Blocking Criteria

1. Characteristics associated with the unit

a. for persons - gender, age, income, intelligence, education, job experience, attitudes, etc.

b. for geographic areas - population size, average income, etc.

2. Characteristics associate with the experimental setting – observer, time of processing (learning by observer,
changes in equipment, environmental condition), machine, batch of material, measuring instrument, etc.

• Advantages of Randomized Complete Block Design

1. It can, with effective grouping, provide substantially more precise results than a completely randomized design
of comparable size.

2. It can accommodate any number of treatments and replications.

3. Different treatments need not have equal sample sizes. For instance, if the control is to have twice as large
a sample size as each of three treatments, blocks of size five would be used: three units in a block are then
assigned at random to the three treatments and two to the control.

4. The statistical analysis is relatively simple.

5. If an entire treatment or block needs to be dropped from the analysis for some reason, such as spoiled results,
the analysis is not complicated thereby.

6. Variability in experimental units can be deliberately introduced to widen the range of validity of the experi-
mental results without sacrificing the precision of the results.

• Disadvatages of Randomized Complete Block Design

1. If observations are missing within a block, a more complex analysis is required.

2. The degrees of freedom for experimental error are not as large as with a completely randomized design. One
degree of freedom is lost for each block after the first.

3. More assumptions are required for the model (e.g., no interactions between treatments and blocks, constant
variance from block to block) than for a completely randomized design model

4. Because the blocking variable is an observational factor and not an experimental factor, cause-and-effect
inferences concerning the relationship between the blocking variable and the response variable cannot be
established.



• Randomized Complete Block Design Model

Yij = µ·· + ρi + τj + εij , for i = 1, . . . , nb and j = 1, . . . , r

where:

1. Yij is the response in the ith block and jth treatment.

2. µ·· is a constant.

3. ρi are constants for the block effects, subject to the restriction

nb∑
i=1

ρi = 0.

4. τj are constants for the treatment effects, subject to the restriction

r∑
j=1

τj = 0.

5. εij are independent N(0, σ2).

• Estimators

Parameter Estimator
µ·· µ̂·· = Ȳ··
ρi ρ̂i = Ȳi· − Ȳ··
τj τ̂i = Ȳ·j − Ȳ··

• ANOVA Table

ANOVA Table

Source DF Sum of Squares Mean Square F

Blocks nb − 1 SSBL =
∑
i=1

r(Ȳi· − Ȳ··)
2 MSBL =

SSBL

nb − 1
FBL =

MSBL

MSE

Treatments r − 1 SSTR =
∑
j=1

nb(Ȳ·j − Ȳ··)
2 MSTR =

SSTR

r − 1
FTR =

MSTR

MSE

Error (nb − 1)(r − 1) SSE =
∑
i=1

∑
j=1

(Yij − Ȳi· − Ȳ·j + Ȳ··)
2 MSE =

SSE

(nb − 1)(r − 1)

Total nbr − 1 SSTO =
∑
i=1

∑
j=1

(Yij − Ȳ··)
2

Note:

1. SSTO = SSTR+ SSBL+ SSE.

2. E(MSBL) = σ2 + r
∑
ρ2i

nb−1 .

3. E(MSTR) = σ2 + nb

∑
τ2
j

r−1 .

4. E(MSE) = σ2.



• Example: Risk Premium. In an experiment on decision making, executives were exposed to one of three
methods of quantifying the maximum risk premium they would be willing to pay to avoid uncertainty in a business
decision. The three methods are the utility method (U), the worry method (W ), and the comparison method (C).
After using the assigned method, the subjects were asked to state their degree of confidence in the method of
quantifying the risk premium on a scale from 0 (no confidence) to 20 (highest confidence). Fifteen subjects were
used in the study. They were grouped into five blocks of three executives, according to age. The table below
contains the results of the experiment.

Age Utility Worry Comparison
1 (oldest) 1 5 8
2 2 8 14
3 7 9 16
4 6 13 18
5 (youngest) 12 14 17

• R commands:

> response=c(1,5,8,2,8,14,7,9,16,6,13,18,12,14,17)

> block=gl(n=5,k=3) # n = no. of levels; k = no. of replications

> treatment=gl(3,1,length=15)

> data=data.frame(rating=response,age=block,method=treatment)

> interaction.plot(treatment,block,response)

> result=aov(response~block+treatment)

> anova(result)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

block 4 171.333 42.833 14.357 0.0010081 **

treatment 2 202.800 101.400 33.989 0.0001229 ***

Residuals 8 23.867 2.983

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> qqnorm(result$residuals)

> plot(result$fitted,result$residuals,xlab="Fitted values",ylab="Residuals")

> tapply(response,treatment,mean)

1 2 3

5.6 9.8 14.6

> TukeyHSD(result,"treatment",conf.level=.95)

$treatment

diff lwr upr p adj

2-1 4.2 1.078534 7.321466 0.0121268

3-1 9.0 5.878534 12.121466 0.0000920

3-2 4.8 1.678534 7.921466 0.0057757

• Analysis of Treatment Effects

1. Single comparison: t = qt(1 − α/2, df = (nb − 1) ∗ (r − 1))

2. Tukey procedure for all pairwise comparison: T = qtukey(1 − α, r, df = (nb − 1) ∗ (r − 1))

3. Scheffe procedure: S = sqrt((r − 1) ∗ qf(1 − α, df1 = r − 1, df2 = (nb − 1) ∗ (r − 1))

4. Bonferroni procedure: B = qt(1 − α/(2 ∗ g), df = (nb − 1) ∗ (r − 1))


