Randomized Complete Block Designs

• Use of More than One Blocking Variable

1. Example 1:

Block	Characteristic of Experimental Units
1	Male, aged 20-29
2	Female, aged 20-29
3	Male, aged 30-39
4	Female, aged 30-39
etc.	etc.

2. Example 2:

Block	Characteristic of Experimental Units
1	Observer 1, day 1
2	Observer 2, day 1
3	Observer 1, day 2
4	Observer 2, day 2
etc.	etc.

• Use of More than One Replicate in Each Treatment within a Block.

When the nature of the interactions between *blocks* and *treatments* is of interest, more than one replicate is required in each treatment within a block. This design is called a *Generalized Randomized Block Design*.

• Generalized Randomized Block Design Model

$$Y_{ijk} = \mu_{..} + \rho_i + \tau_j + (\rho\tau)_{ij} + \epsilon_{ijk}$$
 for $i = 1, ..., n_b; j = 1, ..., r; k = 1, ..., d$

where:

- 1. Y_{ijk} is the kth response in the *i*th block and *j*th treatment.
- **2.** μ .. is a constant.
- **3.** ρ_i are constants for the block effects, subject to the restriction $\sum \rho_i = 0$.
- 4. τ_j are constants for the treatment effects, subject to the restriction $\sum \tau_j = 0$.
- 5. $(\rho\tau)_{ij}$ are constants for the interaction effects, subject to the restriction $\sum_{i} (\rho\tau)_{ij} = \sum_{j} (\rho\tau)_{ij} = 0.$
- **6.** ϵ_{ijk} are independent $N(0, \sigma^2)$.

• ANOVA Table

ANOVA Table

Source	DF	Sum of Squares	Mean Square	F
Blocks	$n_b - 1$	$SSBL = \sum_{i} r(\bar{Y}_{i} - \bar{Y}_{})^2$	$MSBL = \frac{SSBL}{n_b - 1}$	$F_{\rm BL} = \frac{MSBL}{MSE}$
Treatments	r-1	$SSTR = \sum_{j} n_b (\bar{Y}_{.j} - \bar{Y}_{})^2$	$MSTR = \frac{SSTR}{r-1}$	$F_{\rm TR} = \frac{MSTR}{MSE}$
Interactions	$(n_b - 1)(r - 1)$	SSBT	$MSBT = \frac{SSBT}{(n_b - 1)(r - 1)}$	$F_{\rm BT} = \frac{MSBTR}{MSE}$
Error	$n_b r(d-1)$	SSE	$MSE = \frac{SSE}{n_b r(d-1)}$	
Total	$dn_br - 1$	$SSTO = \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{\cdots})^2$		

Note:

1.
$$SSE = \sum_{i=1}^{n_b} \sum_{j=1}^{r} \sum_{k=1}^{d} (Y_{ijk} - \bar{Y}_{ij.})^2$$

2. $SSBT = \sum_{i=1}^{n_b} \sum_{j=1}^{r} d(\bar{Y}_{ij.} - \bar{Y}_{i..} - \bar{Y}_{.j.} + \bar{Y}_{...})^2$
3. $SSTO = SSBL + SSTR + SSBT + SSE.$
4. $E(MSBL) = \sigma^2 + rd \frac{\sum \rho_i^2}{n_b - 1}.$
5. $E(MSB) = \sigma^2 + n_b d \frac{\sum \tau_i^2}{r - 1}.$
6. $E(MSBT) = \sigma^2 + d \frac{\sum \sum (\rho \tau)_{ij}^2}{(n_b - 1)(r - 1)}.$
7. $E(MSE) = \sigma^2.$

• Example: In a single-factor experiment in which the effects of distraction level (factor A: low or high) on the time required to complete a task were studied, using eight men and eight women. Four men were assigned at random to each treatment. The table below contains the results of the experiment.

Distraction	Male	Female
Low	12	3
	8	9
	7	5
	5	9
High	14	11
	16	9
	15	10
	13	14

• R commands:

```
> time=c(12,8,7,5,14,16,15,13,3,9,5,9,11,9,10,14)
```

- > gender=gl(n=2,k=8) # n = no. of levels; k = no. of replications
- > distraction=gl(2,4,length=16)
- > interaction.plot(distraction,gender,time)

```
> result=aov(time~gender*distraction)
> anova(result)
Analysis of Variance Table
```

Response: time Df Sum Sq Mean Sq F value Pr(>F) 25 25 4.1667 0.0638509 . gender 1 121 121 20.1667 0.0007385 *** distraction1 gender:distraction 1 4 4 0.6667 0.4301273 Residuals 12 72 6

> qqnorm(result\$residuals)

> plot(result\$fitted,result\$residuals,xlab="Fitted values",ylab="Residuals")

• Randomized Block Design for Factorial Treatments

1. Example: Two-factor study in a randomized complete block design

		A_1			A_2	
Block	B_1		B_2	B_1		B_2
1	Y ₁₁₁		Y_{112}	Y_{121}		Y_{122}
2	Y_{211}		Y_{212}	Y_{221}		Y_{222}
3	Y_{311}		Y_{312}	Y_{321}		Y_{322}

2. Model:

$$Y_{ijk} = \mu_{\dots} + \rho_i + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk} \quad \text{for } i = 1, \dots, n_b; j = 1, \dots, a; k = 1, \dots, b$$

3. ANOVA Table:

Source	DF	Sum of Squares	Mean Square	F
Blocks	$n_b - 1$	SSBL	$MSBL = \frac{SSBL}{n_b - 1}$	$F_{\rm BL} = \frac{MSBL}{MSE}$
Treatments	r-1	SSTR	$MSTR = \frac{SSTR}{r-1}$	$F_{\rm TR} = \frac{MSTR}{MSE}$
Factor A	a-1	SSA	$MSA = \frac{SSA}{a-1}$	$F_{\rm A} = \frac{MSA}{MSE}$
Factor B	b-1	SSB	$MSB = \frac{SSB}{b-1}$	$F_{\rm B} = \frac{MSB}{MSE}$
AB Interactions	(a-1)(b-1)	SSAB	$MSAB = \frac{SSAB}{(a-1)(b-1)}$	$F_{AB} = \frac{MSAB}{MSE}$
Error	$(n_b - 1)(r - 1)$	SSE	$MSE = \frac{SSE}{(n_b - 1)(r - 1)}$	
Total	$n_b r - 1$	SSTO		

Note:

a.
$$SSTR = SSA + SSB + SSAB$$
.

b. SSTO = SSBL + SSTR + SSE.

4. R commands:

> result=aov(response~block+factorA+factorB+factorA:factorB)

> anova(result)

ANOVA Table