Nested Designs

• Training School Example. A large manufacturing company operates three regional training schools for mechanics, one in each of its operating districts. The schools have two instructors each, who teach classes of about 15 mechanics in three-week sessions. The company was concerned about the effect of school (factor A) and instructor (factor B) on the learning achieved. To investigate these effects, classes in each district were formed in the usual way and then randomly assigned to one of the the two instructors in the school. This was done for two sessions, and at the end of each session a suitable summary measure of learning for the class was obtained. The results are shown below:

School	Instructor 1	Instructor 2
Atlanta	25	14
	29	11
Chicago	11	22
	6	18
San Francisco	17	5
	20	2

• Nested Design Model. Let Y_{ijk} denote the response for the kth trial when factor A is at the *i*th level and factor B is at the *j*th level. Both factors are assumed to be fixed.

$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_{j(i)} + \epsilon_{ijk} \tag{1}$$

where:

- μ.. = Σ_iΣ_jμ_{ij}/ab = Σ_iμ_i/a is a constant with μ_i. = Σ_jμ_{ij}/b
 α_i = μ_i. μ.. are constants subject to the restriction Σ_i α_i = 0
 β_{j(i)} = μ_{ij} μ_i. = μ_{ij} α_i μ.. are constants subject to the restriction Σ_j β_{j(i)} = 0 for all i
 ϵ_{ijk} are independent N(0, σ²)
- **5.** i = 1, ..., a; j = 1, ..., b; k = 1, ..., n (Equal sample sizes)
- Estimation. The least squares and maximum likelihood estimators of the parameters in nested design are given below:

Parameter	Estimator
μ	$\hat{\mu}_{\cdots} = \bar{Y}_{\cdots}$
$lpha_i$	$\hat{\alpha}_i = Y_{i\cdots} - Y_{\cdots}$
$\beta_{j(i)}$	$\hat{\beta}_{j(i)} = \bar{Y}_{ij} - \bar{Y}_{i\cdots}$

• Nested Design Model with Random Effects. Both factors are assumed to be random.

$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$

where:

- **1.** $\mu_{..}$ is a constant
- **2.** $\alpha_i, \beta_{j(i)}, \text{ and } \epsilon_{ijk}$ are independent normal random variables with expectations 0 and variances $\sigma_{\alpha}^2, \sigma_{\beta}^2$, and σ^2 .
- **3.** i = 1, ..., a; j = 1, ..., b; k = 1, ..., n (Equal sample sizes)

• Nested Design Model with Mixed Effects. Factor A is fixed and B is random.

$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$

where:

- **1.** μ .. is a constant
- **2.** α_i are constants subject to the restriction $\sum_i \alpha_i = 0$
- **3.** $\beta_{j(i)}$ and ϵ_{ijk} are independent normal random variables with expectations 0 and variances σ_{β}^2 , and σ^2 .
- **4.** $i = 1, \ldots, a; j = 1, \ldots, b; k = 1, \ldots, n$ (Equal sample sizes)
- ANOVA Table for Nested Balanced Two-Factor Fixed Effects Model (B nested with A)

Source of Variation	DF	Sum of Squares	Mean Square	E(MS)
Factor A	a-1	$SSA = bn \sum (\bar{Y}_{i} - \bar{Y}_{})^2$	$MSA = \frac{SSA}{a-1}$	$\sigma^2 + bn \frac{\sum_i \alpha_i^2}{a-1}$
Factor B (within A)	a(b-1)	$SSB(A) = n \sum \sum (\bar{Y}_{ij.} - \bar{Y}_{i})^2$	$MSB(A) = \frac{SSB(A)}{a(b-1)}$	$\sigma^2 + n \frac{\sum \sum \beta_{j(i)}}{a(b-1)}$
Error	ab(n-1)	$SSE = \sum \sum \sum (\bar{Y}_{ijk} - \bar{Y}_{ij.})^2$	$MSE = \frac{SSE}{ab(n-1)}$	σ^2
Total	abn-1	$SSTO = \sum \sum \sum (\bar{Y}_{ijk} - \bar{Y}_{})^2$		

• R commands:

• Expected Mean Squares. Nested Balanced Two-Factor Designs with Random Effects

Mean Square	Fixed A and Random B	Both Random
MSA	$\sigma^2 + bn \frac{\sum_i \alpha_i^2}{a-1} + n\sigma_\beta^2$	$\sigma^2 + bn\sigma_{\alpha}^2 + n\sigma_{\beta}^2$
MSB(A)	$\sigma^2 + n\sigma_\beta^2$	$\sigma^2 + n\sigma_\beta^2$
MSE	σ^2	σ^2

• Estimation of μ_i : For Fixed Factor A.

- **1.** $\hat{\mu}_{i} = \bar{Y}_{i}$
- **2.** $s^2{\bar{Y}_{i..}} = \frac{MSE}{bn}$ with df = ab(n-1) when B is also fixed.
- **3.** $s^2\{\bar{Y}_{i\cdots}\} = \frac{MSB(A)}{bn}$ with df = a(b-1) when B is random.
- 4. The $(1-\alpha)100\%$ confidence interval: $\bar{Y}_{i..} \pm t_{[1-\alpha/2;df]}s\{\bar{Y}_{i..}\}$
- 5. *Example.* In the Training School example, suppose it was desired to estimate the mean learning score for the Atlanta school with 95% confidence interval.