Reading SPSS Output

Variable: Waistline

 <u>Obtaining summary measures:</u> Click on "Analyze" → "Descriptive Statistics" → "Explore". Move the variable "waist" into the "dependent list" (putting "gender" in the "Factor list" will give you summary measures for males and females separately). To get the qq-plots and the Shapiro-Wilk test, make sure you click on "plots" then check the box for "Normality plots with tests". Below is the SPSS output that you will get:

		Descr	iptives		
	Gender			Statistic	Std. Error
Waist	Female	Mean		85.0325	2.43517
		99% Confidence Interval for	Lower Bound	78.4383	
		Mean	Upper Bound	91.6267	
		5% Trimmed Mean		83.7472	
		Median		81.9500	
		Variance		237.202	
		Std. Deviation		15.40136	
		Minimum		66.70	
		Maximum		126.50	
		Range		59.80	
		Interquartile Range		22.05	
		Skewness		.962	.374
		Kurtosis		.611	.733
	Male	Mean		91.2850	1.55930
		99% Confidence Interval for	Lower Bound	87.0626	
		Mean	Upper Bound	95.5074	
		5% Trimmed Mean		91.2333	
		Median		91.2000	
		Variance		97.256	
		Std. Deviation		9.86185	
		Minimum		75.20	
		Maximum		108.70	
		Range		33.50	
		Interquartile Range		18.78	
		Skewness		.037	.374
		Kurtosis		-1.058	.733

I don't want you to copy and paste this whole table. Just pick out the correct values to put in your tables.

2. <u>Checking Normality.</u> Together with the above table, you will also get results of the Shapiro-Wilk test to determine if it is reasonable to assume that both data sets come from normal population. The result for the "**waist**" variable is given below

Tests of Normality								
	-	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Gender	Statistic	df	Sig.	Statistic	df	Sig.	
Waist	Female	.148	40	.027	.905	40	.003	
	Male	.131	40	.084	.952	40	.090	

Note that the p-value for the Shapiro-Wilk test are 0.003 and 0.090 (in the last column under "Sig."). This implies that the female data set is not normal because the p-value was smaller than alpha=.05. You can also see a curve pattern in the corresponding qq-plots (see left figure below), suggesting that the female data is not normal.

Normal Q-Q Plot of Waist

Normal Q-Q Plot of Waist

3. Non-parameteric Test: Because the female data is not normal, we cannot use the ordinary 2-sample independent t-test. Instead, we are going to use a non-parametric test, called the Mann-Whitney test. You can do this by choosing, "Analyze"→ "Nonparametric Test" → "2 Independent Samples". Choose the variable you wish to test and use *Gender* for "grouping variable". If you don't see *Gender* in the list of variables, then create a new variable that will indicate the grouping of the values (you can do this by simply going to an empty column and type 1 for males and 2 for females). After you moved your grouping variable into the box "Grouping variable", click on "define" to tell SPSS who are in group 1 and who are in group 2. Simply type the code that you used for group 1 and group 2. If you used 1 and 2, then just type 1 in the first box and 2 in the second box. Then hit "continue", then click "ok". You will then get something like the table below:

lest Statistics"						
-	Waist					
Mann-Whitney U	531.000					
Wilcoxon W	1351.000					
Z	-2.589					
Asymp. Sig. (2-tailed)	.010					

a. Grouping Variable: VAR00001

The p-value that you want to look for is the value in the last row, labeled as "Asymp. Sig. (2-tailed)". In this particular example, the p-value is 0.010. Because this p-value is smaller than alpha=0.05, we reject the null hypothesis and conclude that the mean waistline for males is not equal to the mean waistline for females.

4. T-test: Let's suppose that we can assume that both data sets are reasonably normal, just so that I can illustrate how to perform the t-test. You can access the t-test procedure by choosing "Analyze"→ "Compare Means" → "Independent Samples T Test". Use *Gender* for "grouping variable" (Just like you did earlier), then click on "Define Groups", and type "M" for group 1 and "F" for group 2., then hit "continue" and then click "ok". You will then get the table below

Independent Samples Test										
Levene's Test for Equality of Varianc		Test for Variances	t-test for Equality of Means							
							Mean	Std. Error	95% Confidence	Interval of the Difference
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Waist	Equal variances assumed	7.430	.008	2.162	78	.034	6.25250	2.89162	.49573	12.00927
	Equal variances not assumed			2.162	66.378	.034	6.25250	2.89162	.47982	12.02518

When using the t-test, you need to decide if you can assume equal variances. From the table above, we see that the p-value for the Levene's test for equality of variance is 0.008 (under "sig"). Since this value is less than alpha=0.05, this implies that the variances cannot be assumed to be equal. Therefore, you should use the t-test result given in the second row "Equal variances not assumed". The corresponding t_obs is 2.162, df=66.378, and the p-value is 0.034. Since this p-value is smaller than alpha=0.05, we reject the null hypothesis.