Covariance and Linear Functions of R.V.

• **Definition 5.10.** If Y_1 and Y_2 are two random variables with means μ_1 and μ_2 , respectively, the *covariance* of Y_1 and Y_2 is given by

$$Cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)].$$

The correlation coefficient, ρ , is defined as $\rho = \frac{Cov(Y_1, Y_2)}{\sigma_1 \sigma_2}$.

• Theorem 5.10. Let Y_1 and Y_2 be random variables with means μ_1 and μ_2 , respectively, then

$$Cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)] = E(Y_1Y_2) - E(Y_1)E(Y_2).$$

• Theorem 5.11. If Y_1 and Y_2 are independent random variables, then

$$Cov(Y_1, Y_2) = 0.$$

• Theorem 5.12. If Y_1, Y_2, \ldots, Y_n and X_1, X_2, \ldots, X_m be random variables, with $E(Y_i) = \mu_i$ and $E(X_j) = \xi_j$. Define

$$U_1 = \sum_{i=1}^{n} a_i Y_i$$
 and $U_2 = \sum_{j=1}^{m} b_j X_j$

for constants a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_m . Then the following hold:

- 1. $E(U_1) = \sum_{i=1}^n a_i \mu_i$.
- **2.** $V(U_1) = \sum_{i=1}^n a_i^2 V(Y_i) + 2 \sum_{i < j} \sum_{i < j} a_i a_j Cov(Y_i, Y_j)$, where the double sum is over all pairs (i, j) with i < j.
- **3.** $Cov(U_1, U_2) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(Y_i, X_j).$

• Recommended problems: