Estimation

• Definition 8.0 A parameter is a numerical descriptive measure of a population. This quantity is usually unknown but it is constant at a given time.

Examples: $\mu, \sigma^2, \sigma, \rho$.

• Definition 7.1 A sample statistic is a numerical descriptive measure of a sample. Its value is calculated from the observations in the sample.

Examples: \bar{x}, s^2, s, \hat{p} .

- **Definition 8.1** An *estimator* is a rule, often expressed as a formula, that tells how to calculate the value of an estimate based on the measurements contained in a sample.
- Definition 8.2 Let $\hat{\theta}$ be a point estimator for a parameter θ . Then $\hat{\theta}$ is an unbiased estimator if $E(\hat{\theta}) = \theta$. If $E(\hat{\theta}) \neq \theta, \hat{\theta}$ is said to be biased.

Examples:

• **Definition 8.3** The *bias* of a point estimator $\hat{\theta}$ is given by $B(\hat{\theta}) = E(\hat{\theta}) - \theta$.

Exercise 1: Do problem 8.8 on page 394.

Exercise 2: Do problem 8.13 on page 394.

• Definition 8.4 The mean square error of a point estimator $\hat{\theta}$ is given by $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$. Note: $MSE(\hat{\theta}) = V(\hat{\theta}) - [B(\hat{\theta})]^2$

Exercise 3: Do problem 8.15 on page 394.

• Definition 8.5 The error of estimation ϵ is the distance between an estimator and its target parameter. That is, $\epsilon = |\hat{\theta} - \theta|$.