Common Continuous Distributions

• Uniform Distribution. If $\theta_1 < \theta_2$, a random variable X is said to have a continuous uniform probability distribution on the interval $(\theta_1.\theta_2)$ if and only if the density function of X is

$$f(x) = \frac{1}{\theta_2 - \theta_1}, \qquad \qquad \theta_1 \le x \le \theta_2$$

and 0 elsewhere.

Remarks:

- 1. $E(X) = \frac{1}{2}(\theta_1 + \theta_2).$ 2. $Var(X) = \frac{1}{12}(\theta_2 - \theta_1)^2.$ 3. $F(x) = \frac{x - \theta_1}{\theta_2 - \theta_1}, \qquad x \ge 0.$
- Normal Distribution. A continuous r.v. X is said to have a normal distribution with parameters μ and σ (or μ and σ^2), where $-\infty < \mu < \infty$ and $\sigma > 0$, if the pdf of X is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \qquad -\infty < x < \infty$$

Remarks:

- **1.** $E(X) = \mu$.
- **2.** $Var(X) = \sigma^2$.
- Gamma Distribution. A continuous random variable X is said to have a gamma distribution with parameters α and β , where $\alpha > 0, \beta > 0$, if the pdf of X is

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} \qquad x \ge 0$$

where, the gamma function $\Gamma(\alpha)$ is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx \qquad \alpha > 0.$$

Remarks:

1. $E(X) = \alpha \beta$.

2.
$$Var(X) = \alpha \beta^2$$
.

• Special Cases of the Gamma Distribution:

1. Standard Gamma Distribution. When $\beta = 1$. A continuous random variable X is said to have a standard gamma distribution if the pdf of X is

$$f(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \qquad x \ge 0$$

(b) Var(X) =

Find: (a) E(X) =

2. Exponential Distribution. When $\alpha = 1$ and $\beta = \frac{1}{\lambda}$. A continuous random variable X is said to have an exponential distribution with parameter $\alpha > 0$ if the pdf of X is

$$f(x) = \lambda e^{-\lambda x} \qquad x \ge 0$$

Find: (a)
$$E(X) =$$
 (b) $Var(X) =$

3. Chi-Squared Distribution. When $\alpha = \nu/2$ and $\beta = 2$.

A continuous random variable X is said to have a *chi-squared distribution* with parameter $\nu > 0$ if the pdf of X is

$$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2} \qquad x \ge 0$$

The parameter ν is called the *number of degrees of freedom* (df) of X. The symbol χ^2 is often used in place of "chi-squared". (b) Var(X) =

Find: (a) E(X) =

• Weibull Distribution. A random variable X is said to have a Weibull distribution with parameters α and β $(\alpha > 0, \beta > 0)$ if the pdf of X is

$$f(x) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} \qquad x \ge 0$$

Remarks:

1.
$$E(X) = \beta \Gamma \left(1 + \frac{1}{\alpha}\right).$$

2. $Var(X) = \beta^2 \left\{ \Gamma \left(1 + \frac{2}{\alpha}\right) - \left[\Gamma \left(1 + \frac{1}{\alpha}\right)\right]^2 \right\}.$
3. $F(x) = 1 - e^{-(x/\beta)^{\alpha}} \qquad x \ge 0$

- 4. When $\alpha = 1$, this distribution reduces to the exponential distribution with parameter $\lambda = \frac{1}{\beta}$.
- Lognormal Distribution. A nonnegative r.v. X is said to have a lognormal distribution if the r.v. $Y = \ln(X)$ has a normal distribution. The resulting pdf of a lognormal r.v. when $\ln(X)$ is normally distributed with parameters μ and σ is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma x}} e^{-\frac{1}{2\sigma^2} [\ln(x) - \mu]^2} \qquad x \ge 0$$

Remarks:

1.
$$E(X) = e^{\mu + \sigma^2/2}$$
.
2. $Var(X) = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$
3. $F(x) = P(X \le x) = \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right)$

• Beta Distribution. A random variable X is said to have a beta distribution with parameters α , β ($\alpha > 0, \beta >$ 0), A, and B if the pdf of X is

$$f(x) = \frac{1}{B-A} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-A}{B-A}\right)^{\alpha-1} \left(\frac{B-x}{B-A}\right)^{\beta-1} \qquad A \le x \le B$$

Remarks:

1.
$$E(X) = A + (B - A) \cdot \frac{\alpha}{\alpha + \beta}$$

2. $Var(X) = \frac{(B - A)^2 \alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$

3. When A = 0, B = 1, this distribution is called the *Standard Beta Distribution*.

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \qquad 0 \le x \le 1$$

• Student *t*-distribution. If $V \sim \chi^2(\nu)$ and $Z \sim N(0,1)$, then $X = \frac{Z}{\sqrt{V/\nu}}$ follows the *t*-distribution with ν degrees of freedom. A random variable X is said to have a *t*-distribution with parameter ν if the pdf of X is

$$f(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\,\Gamma(\nu/2)} (1 + x^2/\nu)^{-(\nu+1)/2} \qquad -\infty < x < \infty$$

• F-distribution. If $V_1 \sim \chi^2(\nu_1)$ and $V_2 \sim \chi^2(\nu_2)$, then $X = \frac{V_1/\nu_1}{V_2/\nu_2}$ follows the F-distribution with parameters ν_1 and ν_2 . A random variable X is said to have an F-distribution with parameters ν_1 and ν_2 if the pdf of X is

$$f(x) = \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)\nu_1^{\frac{1}{2}\nu_1}\nu_2^{\frac{1}{2}\nu_2}}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \frac{x^{\frac{1}{2}\nu_1 - 1}}{(\nu_2 + \nu_1 x)^{\frac{1}{2}(\nu_1 + \nu_2)}} \qquad x \ge 0$$

