Joint Distributions

• Definition 5.1: Joint Probability Function. Let Y_1 and Y_2 be two discrete random variables. The *joint (or bivariate) probability function* for Y_1 and Y_2 is given by

 $p(y_1, y_2) = Pr(Y_1 = y_1, Y_2 = y_2), \quad -\infty < y_1, y_2 < \infty.$

The function $p(y_1, y_2)$ will be referred to as the *joint probability function* (jpf).

- Theorem 5.1. If Y_1 and Y_2 are two discrete random variables with joint probability function $p(y_1, y_2)$, then
 - **1.** $p(y_1, y_2) \ge 0$ for all y_1, y_2 .
 - 2. $\sum_{(y_1,y_2)} p(y_1,y_2) = 1$, where the sum is over all values (y_1,y_2) that are assigned nonzero probabilities.
- Definition 5.2: Joint Distribution Function. For any random variables Y_1 and Y_2 , the *joint (or bivariate) distribution function* $F(y_1, y_2)$ is given by

$$F(y_1, y_2) = Pr(Y_1 \le y_1, Y_2 \le y_2), \quad -\infty < y_1, y_2 < \infty.$$

• Definition 5.3: Joint Probability Density Function. Let Y_1 and Y_2 be two continuous random variables with joint distribution function $F(y_1, y_2)$. If there exists a nonnegative function $f(y_1, y_2)$ such that

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1$$

for all $-\infty < y_1, y_2 < \infty$, then Y_1 and Y_2 are said to *jointly continuous random variables*. The function $f(y_1, y_2)$ is called the *joint probability density function* (jpdf).

- Theorem 5.2. If Y_1 and Y_2 are two continuous random variables with joint distribution function $F(y_1, y_2)$, then
 - 1. $F(-\infty, -\infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0.$ 2. $F(\infty, \infty) = 1.$
 - **3.** if $y_1^* \ge y_1$ and $y_2^* \ge y_2$, then $F(y_1^*, y_2^*) F(y_1^*, y_2) F(y_1, y_2^*) + F(y_1, y_2) \ge 0$.
- Theorem 5.3. If Y_1 and Y_2 are two continuous random variables with joint density function $f(y_1, y_2)$, then
 - 1. $f(y_1, y_2) \ge 0$ for all y_1, y_2 . 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_2 dy_1 = 1$.
- Recommended problems: Section 5.2: (pp. 232-235) # 4, 5, 7, 9, 11, 13, 15, 17.

Marginal and Conditional Probability Distributions

• Definition 5.4: Marginal Probability Distribution.

- Let Y_1 and Y_2 be jointly discrete random variables with probability function $p(y_1, y_2)$. Then the marginal probability functions of Y_1 and Y_2 , respectively, are given by

$$p_1(y_1) = \sum_{y_2} p(y_1, y_2)$$
 and $p_2(y_2) = \sum_{y_1} p(y_1, y_2)$

- Let Y_1 and Y_2 be jointly continuous random variables with joint density function $f(y_1, y_2)$. Then the marginal density functions of Y_1 and Y_2 , respectively, are given by

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) \, dy_2$$
 and $f_{Y_2}(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) \, dy_1.$

• Definition 5.5: Conditional Discrete Probability Function. If Y_1 and Y_2 are jointly discrete random variables with probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then the conditional discrete probability function of Y_1 given Y_2 is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)}$$

provided that $p_2(y_2) > 0$.

• Definition 5.6: Conditional Distribution Function (Continuous). If Y_1 and Y_2 are jointly continuous random variables with joint density function $f(y_1, y_2)$ then the conditional distribution function of Y_1 given $Y_2 = y_2$ is

$$F(y_1|y_2) = P(Y_1 \le y_1|Y_2 = y_2).$$

• Definition 5.7: Conditional Density Function. Let Y_1 and Y_2 be jointly continuous random variables with joint density function $f(y_1, y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$, respectively. For any y_2 such that $f_2(y_2) > 0$, the conditional density function of Y_1 given $Y_2 = y_2$ is given by

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_{Y_2}(y_2)}$$

and, for any y_1 such that $f_1(y_1) > 0$, the conditional density function of Y_2 given $Y_1 = y_1$ is given by

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_{Y_1}(y_1)}$$

• Recommended problems:

Section 5.3: (pp. 242-247) # 19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 37, 39.