Instructions: Include all relevant work to get full credit.

Homework 10

1. Suppose X has an exponential distribution with parameter $\beta = \frac{1}{\lambda}$,

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0 & \text{elsewhere.} \end{cases}$$

- **a.** Find cumulative distribution function of X, F(x).
- **b.** If P(X > 2) = 0.0821, find $\lambda, E(Y)$, and $P(X \le 1.7)$.
- 2. Suppose X has an exponential distribution with parameter $\beta = \frac{1}{\lambda}$, show that P(X > a + b|X > a) = P(X > b) for any a > 0 and b > 0.
- **3.** Suppose $Y \sim Gamma(\alpha, \beta)$.
 - **a.** Prove that $V(Y) = \alpha \beta^2$. You may use the fact that $E(Y) = \alpha \beta$.
 - **b.** If a is any positive or negative value such that $\alpha + a > 0$, show that $E(Y^a) = \frac{\beta^a \Gamma(\alpha + a)}{\Gamma(\alpha)}$.
 - **c.** Why did your answer in part (b) require that $\alpha + a > 0$?
 - **d.** Use the result in part (b) to give an expression for E(1/Y).