Instructions: Include all relevant work to get full credit.

Homework 21

- 1. Let Y_1, Y_2, \ldots, Y_n be a random sample taken from a normal population with mean μ and variance σ^2 . If \bar{Y} and S^2 represent the sample mean and sample variance, respectively, we have shown in class that the quantity $T = \frac{Y - \mu}{S/\sqrt{n}}$ has a t-distribution with (n-1) degrees of freedom.
 - **a.** Show that the $(1-\alpha)100\%$ confidence interval for μ is given by $\bar{Y} \pm t_{\alpha/2} \left(\frac{S}{\sqrt{n}}\right)$, where $t_{\alpha/2}$ is the value of T such that $P(T > t_{\alpha/2}) = \alpha/2$.
 - **b.** Do problem 8.80 on page 430. Provide an interpretation of the confidence interval you obtained in the context of the problem.
- 2. Given two independent random samples: $X_1, X_2, \ldots, X_{n_1}$ from $N(\mu_1, \sigma^2)$ and $Y_1, Y_2, \ldots, Y_{n_2}$ from $N(\mu_2, \sigma^2)$. Let \bar{X} and S_1^2 represent the sample mean and sample variance, respectively, of sample 1, and \bar{Y} and S_2^2 represent the sample mean and sample variance, respectively, of sample 2.
 - **a.** Use definition 7.2 to show that $T = \frac{(\bar{X} \bar{Y}) (\mu_1 \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} = \frac{(\bar{X} \bar{Y}) (\mu_1 \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ follows the *t*-distribution with $(n_1 + n_2 2)$ degrees of freedom, where $S_p^2 = \frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 2}$. [Hint: Use Theorem 7.2].

b. Use the result of part (a) to show that the $(1 - \alpha)100\%$ confidence interval for $\mu_1 - \mu_2$ is given by

$$(\bar{X} - \bar{Y}) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

where $t_{\alpha/2}$ is the value of T such that $P(T > t_{\alpha/2}) = \alpha/2$.

c. Use the result from part (b) to do all parts of problem 8.90 on page 433.