Instructions: Include all relevant work to get full credit.

Homework 21

- 1. Let Y_1, Y_2, \ldots, Y_n be a random sample taken from a normal population with mean μ and variance σ^2 . If \bar{Y} and S^2 represent the sample mean and sample variance, respectively, we have shown in class that the quantity $T = \frac{\bar{Y} \mu}{S/\sqrt{n}}$ has a t-distribution with (n-1) degrees of freedom.
 - a. Show that the $(1-\alpha)100\%$ confidence interval for μ is given by $\bar{Y} \pm t_{\alpha/2} \left(\frac{S}{\sqrt{n}}\right)$, where $t_{\alpha/2}$ is the value of T such that $P(T > t_{\alpha/2}) = \alpha/2$.
 - b. Do problem 8.80 on page 430. Provide an interpretation of the confidence interval you obtained in the context of the problem.
- 2. Given two independent random samples: $X_1, X_2, \ldots, X_{n_1}$ from $N(\mu_1, \sigma^2)$ and $Y_1, Y_2, \ldots, Y_{n_2}$ from $N(\mu_2, \sigma^2)$. Let \bar{X} and S_1^2 represent the sample mean and sample variance, respectively, of sample 1, and \bar{Y} and S_2^2 represent the sample mean and sample variance, respectively, of sample 2.
 - a. Use definition 7.2 to show that $T = \frac{(\bar{X} \bar{Y}) (\mu_1 \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} = \frac{(\bar{X} \bar{Y}) (\mu_1 \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ follows the t-distribution with $(n_1 + n_2 2)$ degrees of freedom, where $S_p^2 = \frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 2}$. [Hint: Use Theorem 7.2].
 - b. Use the result of part (a) to show that the $(1-\alpha)100\%$ confidence interval for $\mu_1 \mu_2$ is given by

$$(\bar{X} - \bar{Y}) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

where $t_{\alpha/2}$ is the value of T such that $P(T > t_{\alpha/2}) = \alpha/2$.

c. Use the result from part (b) to do all parts of problem 8.90 on page 433.

Solutions:

1) Since $T = \frac{\overline{Y} - u}{5\sqrt{n}} \sim t_{df=n-1}$

 $F_{r}(-t_{y_{2}} < T < t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(-t_{y_{2}} < T < t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(-t_{y_{2}} < \overline{Y} - M < t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(-t_{y_{2}} < \overline{Y} - M < t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(-\overline{Y} - t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(-\overline{Y} - t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(\overline{Y} + t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(\overline{Y} + t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(\overline{Y} + t_{y_{2}}) = 1 - \alpha$ $\Rightarrow P_{r}(\overline{Y} - t_{y_{2}}) = 1 - \alpha$

Hence, the confidence in terval for M is [Y-tz =]

(b) Given: n=21, y=26.0, S=7.4 $\Rightarrow y \pm t_2 = 20.6 \pm 2.086$ $\left(\frac{7.4}{\sqrt{21}}\right) = 20.6 \pm 3.37 = [23.23, 29.97]$ We are 95% confident that the true mean treatment self-esteem sure (n) is between 23.23 and 29.97.

2)
$$x_{1,1}x_{2,...}, x_{n}$$
, $\frac{1}{2}dN/M_{1}$, σ^{2}) $\Rightarrow x \sim N/M_{2} = M_{1}$, $\sigma^{2}_{2} = \frac{\sigma^{2}}{m_{1}}$)

(a) $Y_{1,1}y_{2,...}, y_{n_{2}}$ $\frac{1}{2}dN/M_{2}$, σ^{2}_{1}) $\Rightarrow y \sim N/M_{2}$, $\sigma^{2}_{2} = \frac{\sigma^{2}}{m_{1}}$)

By Theorem 4.3, $x = y \sim N/M_{2}$, $\sigma^{2}_{1} = y = \frac{\sigma^{2}}{m_{1}} + \frac{\sigma^{2}}{m_{2}}$)

$$\Rightarrow \frac{(x-y) - (M_{1}-M_{2})}{\sqrt{\sigma_{1}^{2}} + \frac{\sigma^{2}}{m_{2}}} = \frac{(x-y) - (M_{1}-M_{2})}{\sqrt{1+\frac{1}{n_{2}}}} \sim N(o_{1})$$

$$\Rightarrow \frac{(n_{1}-1)S_{1}^{2}}{\sqrt{1+\frac{1}{n_{2}}}} \sim \chi^{2}_{1}df = n_{1}-1$$

$$\Rightarrow \frac{(n_{1}-1)S_{1}^{2}}{\sqrt{2}} + \frac{(n_{2}-1)S_{2}^{2}}{\sqrt{2}} \sim \chi^{2}_{1}df = n_{1}+n_{2}-2$$

By Definition 7.2.

$$\Rightarrow \frac{(x-y) - (M_{1}-M_{2})}{\sqrt{1+\frac{1}{n_{2}}}} = \frac{(x-y) - (M_{1}-M_{2})}{\sqrt{1$$