Instructions: Include all relevant work to get full credit.

Homework 2

1. A sample space consists of only 5 different outcomes (or simple events), E_1 , E_2 , E_3 , E_4 , and E_5 . If $P(E_1) = P(E_2) = 0.12$, $P(E_3) = .37$, and $P(E_4) = 2P(E_5)$, find the probability of E_4 and E_5 .

Let
$$P(x_5) = x$$
 = $P(E_1) + P(E_2) + P(E_3) + P(E_4) + P(E_5) = 1$
= $12 + 12 + 37 + 2x + x = 1 = 3x = 1 - .61 = .39$

2. Suppose
$$P(A) = 0.35, P(B) = .4, \text{ and } P(A \cap B) = .3.$$

a. Find
$$P(A^c)$$
.

$$\Rightarrow x = .13$$

 $\Rightarrow P(x_5) = .13$ and
 $P(x_4) = .26$

b. Find $P(A \cup B)$.

$$= P(A) + P(B) - P(A \cap B)$$

$$= .35 + .4 - .3 = .45$$

c. Find P(A|B).

$$=\frac{P(A \cap B)}{P(B)} = \frac{.3}{.4} = .75$$

d. Find $P(A^c|B)$.

$$= \frac{P(A^{c} \cap B)}{P(B)} = \frac{.1}{.4} = .25$$

e. Find $P(A^c|B^c)$.

$$= \frac{P(A^{c} \cap B^{c})}{P(B^{c})} = \frac{P((A \cup B)^{c})}{1 - P(B)} = \frac{1 - P(A \cup B)}{1 - P(B)} = \frac{1 - .45}{1 - .4} = \frac{.55}{.60} = \frac{11}{12}$$

f. Are events A and B mutually exclusive? Explain why

 \mathbf{g} . Are events A and B independent? Justify your answer.

3. Prove that $P(A|B) + P(A^c|B) = 1$.

Proof:
$$P(A|B) + P(A^c|B) = \frac{P(A\cap B)}{P(B)} + \frac{P(A^c\cap B)}{P(B)}$$

$$= \frac{P(A\cap B) + P(A^c\cap B)}{P(B)}, \quad \text{Note:}$$

$$= \frac{P(A\cap B) + P(A^c\cap B)}{P(B)}, \quad \text{(A\cap B)} \cup (A^c\cap B) = B$$

$$= \frac{P(A\cap B) \cup (A^c\cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$