Instructions: Include all relevant work to get full credit.

Homework 5

- A particular concentration of a chemical found in polluted water has been found to be lethal to 40% of the fish that are exposed to the concentration for 24 hours. Twenty five (25) fish are placed in a tank containing this concentration of chemical in water for 24 hours.
 - **a.** Let X denote the number of fish that survive out of the 25 fish placed in the tank. Give the name and the parameter values of the distribution of X.
 - b. Find the probability that exactly 14 survive. Use 4 decimal places.
 - c. Find the probability that at most 14 survive. Use 4 decimal places.
 - d. Find the probability that at least 12 survive. Use 4 decimal places.
 - e. Find the mean and variance of the number that survive.
- 2. Suppose there are n trials in a binomial experiment and we observe y₀ "successes," show that P(Y = y₀) is maximized when p = y₀/n. Make sure to check that you get a maximum and not a minimum at this point.
 [Hint: The maximum of P(Y = y₀) and ln(P(Y = y₀)) occur at the same place]. [3]

3. The maximum likelihood estimator for p is $\hat{p} = Y/n$, where $Y \sim \text{binomial}(n, p)$. Derive $E(\hat{p})$ and $V(\hat{p})$. [2]

4. If X has a geometric distribution with success probability p,

• ()

a. show that
$$P(X = \text{an odd integer}) = \frac{p}{1 - (1 - p)^2}$$
. [1]

b. show that
$$E(\hat{p}) = \frac{-p\ln(p)}{1-p}$$
, where $\hat{p} = \frac{1}{X}$ is the maximum likelihood estimator for p .
[Hint: If $|r| < 1$, $\sum_{i=1}^{\infty} \frac{r^i}{i} = -\ln(1-r)$.]
[1]