1. Chapter 7 introduces new integral techniques and many will rely on using earlier techniques. Evaluate each integral using Chapter 5 methods.

(a) \(\int_{0}^{10} 2x \, dx \)
- **Solution outline:** Power rule antidifferentiation
- **2nd solution outline:** Area of a triangle

(b) \(\int (u + 4)(2u + 1) \, du \)
- **Solution outline:** FOIL, then Power rule

(c) \(\int \frac{1}{5\cos\theta \csc\theta} \, d\theta \)
- **Solution outline:** Think of the cosecant in the denominator as a sine in the numerator. Use \(u = \cos\theta \). Afterwards, use \(v = -u \).

(d) \(\int_{0}^{\sqrt{3}/2} \frac{1}{\sqrt{1-x^2}} \, dx \)
- **Solution outline:** this is \(\sin^{-1}(\sqrt{3}/2) - \sin^{-1}(0) = \frac{\pi}{3} - 0 \).

(e) \(\int (x + 2)e^{x^2+4x+17} \, dx \)
- **Solution outline:** Use \(u = x^2 + 4x + 17 \). The \(du \) will take care of \(x + 2 \), once 2's are multiplied in to the numerator and denominator.

(f) \(\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \tan x \, dx \)
- **Solution outline:** Use \(u = \cos x \).

(g) \(\int \frac{\sin \sqrt{x}}{\sqrt{x}} \, dx \)
- **Solution outline:** Use \(u = \sqrt{x} \).

(h) \(\int_{-8}^{8} \sqrt{64-y^2} \, dy \)
- **Solution outline:** Area of half a circle of radius 8.

(i) \(\int_{-8}^{8} \frac{1}{\sqrt{64-y^2}} \, dy \)
- **Solution outline:** Factor the 64, use \(u = \frac{1}{8}y \).

(j) \(\int \sin^4 x \cos x \, dx \)
- **Solution outline:** Use \(u = \sin x \).

(k) \(\int u^7 \sqrt{u^4 + 9} \, du \)
- **Solution outline:** Use \(v = u^4 + 9 \). Rewrite the \(u^7 \) as \(u^3 \cdot u^4 \). The \(u^4 \) part can get replaced with \(v - 9 \).
1. \(\int_{-\sqrt{3/3}}^{1} \frac{1}{1+3x^2} \, dx \)
 - **Solution outline:** Use \(u = \frac{1}{\sqrt{3}} x \).

2. \(\int \frac{x^4 + x^3 + x^2 + x + 1}{x^2} \, dx \)
 - **Solution outline:** Rewrite as the sum of 5 separate fractions. The first three terms will require Power Rule. The 4th term will antidifferentiate to natural log of absolute value of \(x \). The last term uses the Power Rule for integrals as well, but just has a negative exponent.
 Here's a little more detail:
 \[
 \int \frac{x^4 + x^3 + x^2 + x + 1}{x^2} \, dx = \int \left(x^2 + x + 1 + \frac{1}{x} + \frac{1}{x^2} \right) \, dx \\
 = \int x^2 + x + 1 + \frac{1}{x} + x^{-2} \, dx \\
 = \frac{1}{3} x^3 + \frac{1}{2} x^2 + x + \ln|x| + \frac{1}{-1} x^{-1} + C \\
 = \frac{1}{3} x^3 + \frac{1}{2} x^2 + x + \ln|x| - \frac{1}{x} + C
 \]

3. \(\int \frac{\sec^2 x}{2 + \tan x} \, dx \)
 - **Solution outline:** Use \(u = 2 + \tan x \).

4. \(\int x^9 (x^5 + 3)^7 \, dx \)
 - **Solution outline:** Use \(u = x^5 + 3 \). Split the \(x^9 \) into two factors.

5. \(\int (\sin x + \cos x)^2 \, dx \)
 - **Solution outline:** FOIL first. Use the main Pythagorean identity. Then you can use \(u = \sin x \).
 - **2nd solution outline:** FOIL first. Use the main Pythagorean identity. Then you can use \(u = \cos x \).
 - **3rd solution outline:** FOIL first. Use the main Pythagorean identity. Then use the sine double angle identity. Then you can use \(u = 2x \).

2. If \(f(x) = 2e^x \csc x - (6 + \cot x)^{\sin^{-1} x} \), find \(f'(x) \)
 - **Solution:** We can consider one term at a time: in other words, by using
 \[
 f = 2e^x \csc x - (6 + \cot x)^{\sin^{-1} x}
 \]
 we have \(f = g - y \), thus \(f' = g' - y' \). The derivative of \(g \) is found by using the Product Rule. First, here's how I'd like to think of \(g \) as the product of two functions, though this is not the only way to do this:
 \[
 g = (2e^x) \csc x
 \]
 Then
 \[
 g' = (2e^x) \left(\csc x \right)' + (2e^x) \left(\csc x \right) = 2e^x (-\csc x \cot x) + 2e^x \csc x
 \]
 Now how about \(y' \)? Since \(y \) has \(x \)'s in BOTH the base AND exponent, the **ONLY** way to take the derivative is by logarithmic differentiation.
 \[
 y = (6 + \cot x)^{\sin^{-1} x}
 \]
\[
\ln y = \ln \left((6 + \cot x)^{\sin^{-1} x} \right)
\]
\[
\ln y = \sin^{-1} x \cdot \ln(6 + \cot x)
\]

Now differentiate both sides with respect to \(x \), keeping in mind that \(y \) is a function of \(x \) on the left side:

\[
\frac{y'}{y} = \sin^{-1} x \cdot \frac{1}{6 + \cot x} \cdot (-\csc^2 x) + \frac{1}{\sqrt{1 - x^2}} \cdot \ln(6 + \cot x)
\]

By rewriting the algebra,

\[
\frac{y'}{y} = -\csc^2 x \cdot \sin^{-1} x \cdot \frac{1}{6 + \cot x} + \frac{\ln(6 + \cot x)}{\sqrt{1 - x^2}}
\]

Multiply by \(y \) on both sides:

\[
y' = y \left(-\csc^2 x \cdot \sin^{-1} x \cdot \frac{1}{6 + \cot x} + \frac{\ln(6 + \cot x)}{\sqrt{1 - x^2}} \right)
\]

Replace \(y \) with \((6 + \cot x)^{\sin^{-1} x}\) to get

\[
y' = (6 + \cot x)^{\sin^{-1} x} \left(-\csc^2 x \cdot \sin^{-1} x \cdot \frac{1}{6 + \cot x} + \frac{\ln(6 + \cot x)}{\sqrt{1 - x^2}} \right)
\]

Now, let's piece everything together:

\[
f''(x) = g'(x) - y'(x) = \frac{-2e^x \csc x \cot x + 2e^x \csc x}{g'(x)} - (6 + \cot x)^{\sin^{-1} x} \left(-\csc^2 x \cdot \sin^{-1} x \cdot \frac{1}{6 + \cot x} + \frac{\ln(6 + \cot x)}{\sqrt{1 - x^2}} \right)
\]

3. If \(y = \tan^{-1} x + \frac{5 \sin(x)}{3^x + \log_4 x} \), find \(\frac{dy}{dx} \)

- **Solution:** This is to remind you that in Leibnitz notation, the derivative of \(y \) with respect to input \(x \) is written as \(\frac{dy}{dx} \). The same thing in Newton notation is \(y' \) or \(y'(x) \). See the top half of page 157.

\[
\frac{dy}{dx} = \frac{1}{x^2 + 1} + \frac{(3^x + \log_4 x)(5 \cos x) - (5 \sin x)(3^x \ln 3 + \frac{1}{x \ln 4})}{(3^x + \log_4 x)^2}
\]

4. If \(y = \sec(x^4) + 3 \tan x \), find \(y' \)

- **Solution:** \(y' = \sec(x^4) \tan(x^4) \cdot 4x^3 + 3 \tan x \cdot 3 \cdot \sec^2 x \)

Be sure that you have the factor of \(\tan(x^4) \) in the first term and the fact that \(\tan(\ln x) \) is the use of \(x \) as the output and \(t \) as the input, as usually \(x \) is the input.

5. If \(x = t \sin t \), find \(\frac{d^2x}{dt^2} \)

- **Solution:** Writing \(\frac{dx}{dt} \) is the Leibnitz notation for the first derivative of \(x \) with respect to \(t \) and writing \(\frac{d^2x}{dt^2} \) is the second derivative of \(x \) with respect to \(t \). Read the top half of page 161 in the book for a refresher.

In Newton notation, \(\frac{dx}{dt} \) would be written \(x' \) and \(\frac{d^2x}{dt^2} \) would be written \(x'' \). What's unusual about this problem (but it's very common in later Calc classes) is the use of \(x \) as the output and \(t \) as the input, as usually \(x \) is the input.

By the Product Rule,

\[
\frac{dx}{dt} = t \cos t + \sin t
\]

To find the second derivative, we'll need the Product Rule on the first term:

\[
\frac{d^2x}{dt^2} = -t \sin t + \cos t + \cos t = 2 \cos t - t \sin t
\]

(a) \(\lim_{x \to \infty} \left(1 + \frac{2}{3x} \right) \)
 • **Solution:** Use the Sum Law first. Then for the limit of \(\frac{2}{3x} \), this is a fixed number over a big number, whose limit is zero (see Theorem 5 in Section 2.6). The overall limit is 1.

(b) \(\lim_{x \to \infty} \left(1 + \frac{2}{3x} \right)^x \)
 • **Solution:** Use L'Hospital's rule. (See the indeterminate forms at the end of Section 4.4.)

(c) \(\lim_{x \to 0} \frac{\sin 4x}{\sin 6x} \)
 • **Solution:** Use L'Hospital's Rule for this \(\frac{0}{0} \) indeterminate form.

(d) \(\lim_{x \to 0} \frac{\sin 4x}{\cos 6x} \)
 • **Solution:** Use the Quotient Law for limits (Section 2.3)

(e) \(\lim_{x \to 1} \frac{\ln x}{x - 1} \)
 • **Solution:** Use L'Hospital's Rule for \(\frac{0}{0} \) form.

(f) \(\lim_{x \to -\ln 3} e^x \)
 • **Solution:** Use the fact that \(e^x \) is continuous. Use the actual DEFINITION of continuity in Section 2.5.

(g) \(\lim_{x \to 0} \frac{\sin x}{x + \tan x} \)
 • **Solution:** Use L'Hospital's Rule for this \(\frac{0}{0} \) indeterminate form.

(h) \(\lim_{x \to 0} (\tan 2x)^x \)
 • **Solution:** Use L'Hospital's rule. (See the indeterminate forms at the end of Section 4.4.)

(i) \(\lim_{x \to 0} x \cot x \)
 • **Solution:** Rewrite this first as \(\lim_{x \to 0} \frac{x}{\tan x} \), which is a L'Hospital's \(\frac{0}{0} \) indeterminate form.

(j) \(\lim_{x \to \infty} \frac{1 - 6e^x}{1 + 13e^x} \)
 • **Solution:** Using L'Hospital's rule for this \(\frac{\infty}{\infty} \) form, you get
 \[
 \lim_{x \to \infty} \frac{1 - 6e^x}{1 + 13e^x} = \lim_{x \to \infty} \frac{-6e^x}{13e^x} = \lim_{x \to \infty} \frac{-6}{13} = -\frac{6}{13}
 \]

(k) \(\lim_{n \to \infty} n^{1/n} \)
 • **Solution:** Use L'Hospital's rule. (See the indeterminate forms at the end of Section 4.4.) If it helps you, first replace each \(n \) with an \(x \).
\[
\lim_{x \to \infty} \frac{8x^9 + 3x}{3x^{10} + x + 2}
\]

- **Solution:** One solution uses L'Hopital's Rule 9 times. Another option is to take the fraction and multiply by \(\frac{1}{x^{10}} \) in the numerator and the denominator. (See similar examples worked out in Section 2.6.)